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Foreword

Most of us took mathematics courses from mathematicians—Bad Idea!

Mathematicians see mathematics as an area of study in its own right.
The rest of us use mathematics as a precise language for expressing rela-
tionships among quantities in the real world, and as a tool for deriving
quantitative conclusions from these relationships. For that purpose, math-
ematics courses, as they are taught today, are seldom helpful and are often
downright destructive.

As a student, I promised myself that if I ever became a teacher, I would
never put a student through that kind of teaching. I have spent my life
trying to find direct and transparent ways of seeing reality and trying to
express these insights quantitatively, and I have never knowingly broken
my promise.

With rare exceptions, the mathematics that I have found most useful was
learned in science and engineering classes, on my own, or from this book.
Street-Fighting Mathematics is a breath of fresh air. Sanjoy Mahajan teaches
us, in the most friendly way, tools that work in the real world. Just when
we think that a topic is obvious, he brings us up to another level. My
personal favorite is the approach to the Navier–Stokes equations: so nasty
that I would never even attempt a solution. But he leads us through one,
gleaning gems of insight along the way.

In this little book are insights for every one of us. I have personally
adopted several of the techniques that you will find here. I recommend
it highly to every one of you.

—Carver Mead





Preface

Too much mathematical rigor teaches rigor mortis: the fear of making
an unjustified leap even when it lands on a correct result. Instead of
paralysis, have courage—shoot first and ask questions later. Although
unwise as public policy, it is a valuable problem-solving philosophy, and
it is the theme of this book: how to guess answers without a proof or an
exact calculation.
Educated guessing and opportunistic problem solving require a toolbox.
A tool, to paraphrase George Polya, is a trick I use twice. This book
builds, sharpens, and demonstrates tools useful across diverse fields of
human knowledge. The diverse examples help separate the tool—the
general principle—from the particular applications so that you can grasp
and transfer the tool to problems of particular interest to you.
The examples used to teach the tools include guessing integrals with-
out integrating, refuting a common argument in the media, extracting
physical properties from nonlinear differential equations, estimating drag
forces without solving the Navier–Stokes equations, finding the shortest
path that bisects a triangle, guessing bond angles, and summing infinite
series whose every term is unknown and transcendental.
This book complements works such as How to Solve It [37], Mathematics
and Plausible Reasoning [35, 36], and The Art and Craft of Problem Solving
[49]. They teach how to solve exactly stated problems exactly, whereas life
often hands us partly defined problems needing only moderately accurate
solutions. A calculation accurate only to a factor of 2 may show that
a proposed bridge would never be built or a circuit could never work.
The effort saved by not doing the precise analysis can be spent inventing
promising new designs.
This book grew out of a short course of the same name that I taught
for several years at MIT. The students varied widely in experience: from
first-year undergraduates to graduate students ready for careers in re-
search and teaching. The students also varied widely in specialization:



xiv Preface

from physics, mathematics, and management to electrical engineering,
computer science, and biology. Despite or because of the diversity, the
students seemed to benefit from the set of tools and to enjoy the diversity
of illustrations and applications. I wish the same for you.

How to use this book
Aristotle was tutor to the young Alexander of Macedon (later, Alexander
the Great). As ancient royalty knew, a skilled and knowledgeable tutor is
the most effective teacher [8]. A skilled tutor makes few statements and
asks many questions, for she knows that questioning, wondering, and
discussing promote long-lasting learning. Therefore, questions of two
types are interspersed through the book.
Questions marked with a in the margin: These questions are what a tutor
might ask you during a tutorial, and ask you to work out the next steps
in an analysis. They are answered in the subsequent text, where you can
check your solutions and my analysis.
Numbered problems: These problems, marked with a shaded background,
are what a tutor might give you to take home after a tutorial. They ask
you to practice the tool, to extend an example, to use several tools together,
and even to resolve (apparent) paradoxes.
Try many questions of both types!

Copyright license
This book is licensed under the same license as MIT’s OpenCourseWare: a
Creative Commons Attribution-Noncommercial-Share Alike license. The
publisher and I encourage you to use, improve, and share the work non-
commercially, and we will gladly receive any corrections and suggestions.
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Bon voyage
As our first tool, let’s welcome a visitor from physics and engineering:
the method of dimensional analysis.
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1.4 Summary and further problems 11

Our first street-fighting tool is dimensional analysis or, when abbreviated,
dimensions. To show its diversity of application, the tool is introduced
with an economics example and sharpened on examples from Newtonian
mechanics and integral calculus.

1.1 Economics: The power of multinational corporations

Critics of globalization often make the following comparison [25] to prove
the excessive power of multinational corporations:

In Nigeria, a relatively economically strong country, the GDP [gross domestic
product] is $99 billion. The net worth of Exxon is $119 billion. “When multi-
nationals have a net worth higher than the GDP of the country in which they
operate, what kind of power relationship are we talking about?” asks Laura
Morosini.

Before continuing, explore the following question:

What is the most egregious fault in the comparison between Exxon and Nigeria?

The field is competitive, but one fault stands out. It becomes evident after
unpacking the meaning of GDP. A GDP of $99 billion is shorthand for
a monetary flow of $99 billion per year. A year, which is the time for
the earth to travel around the sun, is an astronomical phenomenon that
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has been arbitrarily chosen for measuring a social phenomenon—namely,
monetary flow.

Suppose instead that economists had chosen the decade as the unit of
time for measuring GDP. Then Nigeria’s GDP (assuming the flow remains
steady from year to year) would be roughly $1 trillion per decade and
be reported as $1 trillion. Now Nigeria towers over Exxon, whose puny
assets are a mere one-tenth of Nigeria’s GDP. To deduce the opposite
conclusion, suppose the week were the unit of time for measuring GDP.
Nigeria’s GDP becomes $2 billion per week, reported as $2 billion. Now
puny Nigeria stands helpless before the mighty Exxon, 50-fold larger than
Nigeria.

A valid economic argument cannot reach a conclusion that depends on
the astronomical phenomenon chosen to measure time. The mistake lies
in comparing incomparable quantities. Net worth is an amount: It has
dimensions of money and is typically measured in units of dollars. GDP,
however, is a flow or rate: It has dimensions of money per time and
typical units of dollars per year. (A dimension is general and independent
of the system of measurement, whereas the unit is how that dimension is
measured in a particular system.) Comparing net worth to GDP compares
a monetary amount to a monetary flow. Because their dimensions differ,
the comparison is a category mistake [39] and is therefore guaranteed to
generate nonsense.

Problem 1.1 Units or dimensions?
Are meters, kilograms, and seconds units or dimensions? What about energy,
charge, power, and force?

A similarly flawed comparison is length per time (speed) versus length:
“I walk 1.5m s−1—much smaller than the Empire State building in New
York, which is 300m high.” It is nonsense. To produce the opposite but
still nonsense conclusion, measure time in hours: “I walk 5400m/hr—
much larger than the Empire State building, which is 300m high.”

I often see comparisons of corporate and national power similar to our
Nigeria–Exxon example. I once wrote to one author explaining that I
sympathized with his conclusion but that his argument contained a fatal
dimensional mistake. He replied that I had made an interesting point
but that the numerical comparison showing the country’s weakness was
stronger as he had written it, so he was leaving it unchanged!
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A dimensionally valid comparison would compare like with like: either
Nigeria’s GDP with Exxon’s revenues, or Exxon’s net worth with Nige-
ria’s net worth. Because net worths of countries are not often tabulated,
whereas corporate revenues are widely available, try comparing Exxon’s
annual revenues with Nigeria’s GDP. By 2006, Exxon had become Exxon
Mobil with annual revenues of roughly $350 billion—almost twice Nige-
ria’s 2006 GDP of $200 billion. This valid comparison is stronger than the
flawed one, so retaining the flawed comparison was not even expedient!

That compared quantities must have identical dimensions is a necessary
condition for making valid comparisons, but it is not sufficient. A costly
illustration is the 1999 Mars Climate Orbiter (MCO), which crashed into
the surface of Mars rather than slipping into orbit around it. The cause,
according to the Mishap Investigation Board (MIB), was a mismatch be-
tween English and metric units [26, p. 6]:

The MCO MIB has determined that the root cause for the loss of the MCO
spacecraft was the failure to use metric units in the coding of a ground
software file, Small Forces, used in trajectory models. Specifically, thruster
performance data in English units instead of metric units was used in the
software application code titled SM_FORCES (small forces). A file called An-
gular Momentum Desaturation (AMD) contained the output data from the
SM_FORCES software. The data in the AMD file was required to be in metric
units per existing software interface documentation, and the trajectory model-
ers assumed the data was provided in metric units per the requirements.

Make sure to mind your dimensions and units.

Problem 1.2 Finding bad comparisons
Look for everyday comparisons—for example, on the news, in the newspaper,
or on the Internet—that are dimensionally faulty.

1.2 Newtonian mechanics: Free fall

Dimensions are useful not just to debunk incorrect arguments but also to
generate correct ones. To do so, the quantities in a problem need to have
dimensions. As a contrary example showing what not to do, here is how
many calculus textbooks introduce a classic problem in motion:

A ball initially at rest falls from a height of h feet and hits the ground at a
speed of v feet per second. Find v assuming a gravitational acceleration of g
feet per second squared and neglecting air resistance.
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The units such as feet or feet per second are highlighted in boldface
because their inclusion is so frequent as to otherwise escape notice, and
their inclusion creates a significant problem. Because the height is h

feet, the variable h does not contain the units of height: h is therefore
dimensionless. (For h to have dimensions, the problem would instead
state simply that the ball falls from a height h; then the dimension of
length would belong to h.) A similar explicit specification of units means
that the variables g and v are also dimensionless. Because g, h, and v

are dimensionless, any comparison of v with quantities derived from g

and h is a comparison between dimensionless quantities. It is therefore
always dimensionally valid, so dimensional analysis cannot help us guess
the impact speed.
Giving up the valuable tool of dimensions is like fighting with one hand
tied behind our back. Thereby constrained, we must instead solve the
following differential equation with initial conditions:

d2y

dt2
= −g,with y(0) = h and dy/dt = 0 at t = 0, (1.1)

where y(t) is the ball’s height, dy/dt is the ball’s velocity, and g is the
gravitational acceleration.

Problem 1.3 Calculus solution
Use calculus to show that the free-fall differential equation d2y/dt2 = −g with
initial conditions y(0) = h and dy/dt = 0 at t = 0 has the following solution:

dy

dt
= −gt and y = −

1

2
gt2 + h. (1.2)

Using the solutions for the ball’s position and velocity in Problem 1.3, what is
the impact speed?

When y(t) = 0, the ball meets the ground. Thus the impact time t0 is√
2h/g. The impact velocity is −gt0 or −

√
2gh. Therefore the impact

speed (the unsigned velocity) is
√
2gh.

This analysis invites several algebra mistakes: forgetting to take a square
root when solving for t0, or dividing rather than multiplying by g when
finding the impact velocity. Practice—in other words, making and cor-
recting many mistakes—reduces their prevalence in simple problems, but
complex problems with many steps remain minefields. We would like
less error-prone methods.
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One robust alternative is the method of dimensional analysis. But this
tool requires that at least one quantity among v, g, and h have dimensions.
Otherwise, every candidate impact speed, no matter how absurd, equates
dimensionless quantities and therefore has valid dimensions.
Therefore, let’s restate the free-fall problem so that the quantities retain
their dimensions:

A ball initially at rest falls from a height h and hits the ground at speed v.
Find v assuming a gravitational acceleration g and neglecting air resistance.

The restatement is, first, shorter and crisper than the original phrasing:
A ball initially at rest falls from a height of h feet and hits the ground at a
speed of v feet per second. Find v assuming a gravitational acceleration of g
feet per second squared and neglecting air resistance.

Second, the restatement is more general. It makes no assumption about
the system of units, so it is useful even if meters, cubits, or furlongs are
the unit of length. Most importantly, the restatement gives dimensions to
h, g, and v. Their dimensions will almost uniquely determine the impact
speed—without our needing to solve a differential equation.
The dimensions of height h are simply length or, for short, L. The dimen-
sions of gravitational acceleration g are length per time squared or LT−2,
where T represents the dimension of time. A speed has dimensions of
LT−1, so v is a function of g and h with dimensions of LT−1.

Problem 1.4 Dimensions of familiar quantities
In terms of the basic dimensions length L, mass M, and time T, what are the
dimensions of energy, power, and torque?

What combination of g and h has dimensions of speed?

The combination
√
gh has dimensions of speed.(

LT−2︸ ︷︷ ︸
g

× L︸︷︷︸
h

)1/2
=
√

L2T−2 = LT−1︸ ︷︷ ︸
speed

. (1.3)

Is
√
gh the only combination of g and h with dimensions of speed?

In order to decide whether
√
gh is the only possibility, use constraint

propagation [43]. The strongest constraint is that the combination of g and
h, being a speed, should have dimensions of inverse time (T−1). Because
h contains no dimensions of time, it cannot help construct T−1. Because
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g contains T−2, the T−1 must come from √g. The second constraint is
that the combination contain L1. The √g already contributes L1/2, so the
missing L1/2 must come from

√
h. The two constraints thereby determine

uniquely how g and h appear in the impact speed v.

The exact expression for v is, however, not unique. It could be
√
gh,
√
2gh,

or, in general,
√
gh×dimensionless constant. The idiom of multiplication

by a dimensionless constant occurs frequently and deserves a compact
notation akin to the equals sign:

v ∼
√
gh. (1.4)

Including this ∼ notation, we have several species of equality:

∝ equality except perhaps for a factor with dimensions,
∼ equality except perhaps for a factor without dimensions,
≈ equality except perhaps for a factor close to 1.

(1.5)

The exact impact speed is
√
2gh, so the dimensions result

√
gh contains

the entire functional dependence! It lacks only the dimensionless factor√
2, and these factors are often unimportant. In this example, the height

might vary from a few centimeters (a flea hopping) to a few meters (a cat
jumping from a ledge). The factor-of-100 variation in height contributes
a factor-of-10 variation in impact speed. Similarly, the gravitational accel-
eration might vary from 0.27m s−2 (on the asteroid Ceres) to 25m s−2 (on
Jupiter). The factor-of-100 variation in g contributes another factor-of-10
variation in impact speed. Much variation in the impact speed, therefore,
comes not from the dimensionless factor

√
2 but rather from the symbolic

factors—which are computed exactly by dimensional analysis.

Furthermore, not calculating the exact answer can be an advantage. Exact
answers have all factors and terms, permitting less important information,
such as the dimensionless factor

√
2, to obscure important information

such as
√
gh. As William James advised, “The art of being wise is the art

of knowing what to overlook” [19, Chapter 22].

Problem 1.5 Vertical throw
You throw a ball directly upward with speed v0. Use dimensional analysis to
estimate how long the ball takes to return to your hand (neglecting air resistance).
Then find the exact time by solving the free-fall differential equation. What
dimensionless factor was missing from the dimensional-analysis result?
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1.3 Guessing integrals

The analysis of free fall (Section 1.2) shows the value of not separating
dimensioned quantities from their units. However, what if the quantities
are dimensionless, such as the 5 and x in the following Gaussian integral:∫∞

−∞
e−5x2 dx ? (1.6)

Alternatively, the dimensions might be unspecified—a common case in
mathematics because it is a universal language. For example, probability
theory uses the Gaussian integral∫ x2

x1

e−x2/2σ2

dx, (1.7)

where x could be height, detector error, or much else. Thermal physics
uses the similar integral∫

e−
1
2
mv2/kT dv, (1.8)

where v is a molecular speed. Mathematics, as the common language,
studies their common form

∫
e−αx2 without specifying the dimensions of

α and x. The lack of specificity gives mathematics its power of abstraction,
but it makes using dimensional analysis difficult.

How can dimensional analysis be applied without losing the benefits of mathe-
matical abstraction?

The answer is to find the quantities with unspecified dimensions and then
to assign them a consistent set of dimensions. To illustrate the approach,
let’s apply it to the general definite Gaussian integral∫∞

−∞
e−αx2 dx. (1.9)

Unlike its specific cousin with α = 5, which is the integral
∫∞
−∞ e−5x2 dx,

the general form does not specify the dimensions of x or α—and that
openness provides the freedom needed to use the method of dimensional
analysis.
The method requires that any equation be dimensionally valid. Thus,
in the following equation, the left and right sides must have identical
dimensions:
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∫∞
−∞

e−αx2 dx = something. (1.10)

Is the right side a function of x? Is it a function of α? Does it contain a constant
of integration?

The left side contains no symbolic quantities other than x and α. But
x is the integration variable and the integral is over a definite range, so
x disappears upon integration (and no constant of integration appears).
Therefore, the right side—the “something”—is a function only of α. In
symbols,∫∞

−∞
e−αx2 dx = f(α). (1.11)

The function f might include dimensionless numbers such as 2/3 or
√
π,

but α is its only input with dimensions.

For the equation to be dimensionally valid, the integral must have the
same dimensions as f(α), and the dimensions of f(α) depend on the
dimensions of α. Accordingly, the dimensional-analysis procedure has
the following three steps:

Step 1. Assign dimensions to α (Section 1.3.1).

Step 2. Find the dimensions of the integral (Section 1.3.2).

Step 3. Make an f(α) with those dimensions (Section 1.3.3).

1.3.1 Assigning dimensions to α

The parameter α appears in an exponent. An exponent specifies how
many times to multiply a quantity by itself. For example, here is 2n:

2n = 2× 2× · · · × 2︸ ︷︷ ︸
n terms

. (1.12)

The notion of “how many times” is a pure number, so an exponent is
dimensionless.

Hence the exponent −αx2 in the Gaussian integral is dimensionless. For
convenience, denote the dimensions of α by [α] and of x by [x]. Then

[α] [x]2 = 1, (1.13)
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or

[α] = [x]−2
. (1.14)

This conclusion is useful, but continuing to use unspecified but general
dimensions requires lots of notation, and the notation risks burying the
reasoning.
The simplest alternative is to make x dimensionless. That choice makes α

and f(α) dimensionless, so any candidate for f(α) would be dimensionally
valid, making dimensional analysis again useless. The simplest effective
alternative is to give x simple dimensions—for example, length. (This
choice is natural if you imagine the x axis lying on the floor.) Then
[α] = L−2.

1.3.2 Dimensions of the integral

The assignments [x] = L and [α] = L−2 determine the dimensions of the
Gaussian integral. Here is the integral again:∫∞

−∞
e−αx2 dx. (1.15)

The dimensions of an integral depend on the dimensions of its three
pieces: the integral sign

∫
, the integrand e−αx2 , and the differential dx.

The integral sign originated as an elongated S for Summe, the German
word for sum. In a valid sum, all terms have identical dimensions: The
fundamental principle of dimensions requires that apples be added only
to apples. For the same reason, the entire sum has the same dimensions
as any term. Thus, the summation sign—and therefore the integration
sign—do not affect dimensions: The integral sign is dimensionless.

Problem 1.6 Integrating velocity
Position is the integral of velocity. However, position and velocity have differ-
ent dimensions. How is this difference consistent with the conclusion that the
integration sign is dimensionless?

Because the integration sign is dimensionless, the dimensions of the inte-
gral are the dimensions of the exponential factor e−αx2 multiplied by the
dimensions of dx. The exponential, despite its fierce exponent −αx2, is
merely several copies of e multiplied together. Because e is dimensionless,
so is e−αx2 .
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What are the dimensions of dx?

To find the dimensions of dx, follow the advice of Silvanus Thompson
[45, p. 1]: Read d as “a little bit of.” Then dx is “a little bit of x.” A little
length is still a length, so dx is a length. In general, dx has the same
dimensions as x. Equivalently, d—the inverse of

∫
—is dimensionless.

Assembling the pieces, the whole integral has dimensions of length:[∫
e−αx2 dx

]
=
[
e−αx2
]

︸ ︷︷ ︸
1

× [dx]︸︷︷︸
L

= L. (1.16)

Problem 1.7 Don’t integrals compute areas?
A common belief is that integration computes areas. Areas have dimensions of
L2. How then can the Gaussian integral have dimensions of L?

1.3.3 Making an f(α) with correct dimensions

The third and final step in this dimensional analysis is to construct an f(α)

with the same dimensions as the integral. Because the dimensions of α

are L−2, the only way to turn α into a length is to form α−1/2. Therefore,

f(α) ∼ α−1/2. (1.17)

This useful result, which lacks only a dimensionless factor, was obtained
without any integration.
To determine the dimensionless constant, set α = 1 and evaluate

f(1) =

∫∞
−∞

e−x2 dx. (1.18)

This classic integral will be approximated in Section 2.1 and guessed to be√
π. The two results f(1) =

√
π and f(α) ∼ α−1/2 require that f(α) =

√
π/α,

which yields∫∞
−∞

e−αx2 dx =

√
π

α
. (1.19)

We often memorize the dimensionless constant but forget the power of α.
Do not do that. The α factor is usually much more important than the
dimensionless constant. Conveniently, the α factor is what dimensional
analysis can compute.
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Problem 1.8 Change of variable
Rewind back to page 8 and pretend that you do not know f(α). Without doing
dimensional analysis, show that f(α) ∼ α−1/2.

Problem 1.9 Easy case α = 1

Setting α = 1, which is an example of easy-cases reasoning (Chapter 2), violates
the assumption that x is a length and α has dimensions of L−2. Why is it okay
to set α = 1?

Problem 1.10 Integrating a difficult exponential

Use dimensional analysis to investigate
∫∞
0

e−αt3 dt.

1.4 Summary and further problems

Do not add apples to oranges: Every term in an equation or sum must
have identical dimensions! This restriction is a powerful tool. It helps us
to evaluate integrals without integrating and to predict the solutions of
differential equations. Here are further problems to practice this tool.

Problem 1.11 Integrals using dimensions

Use dimensional analysis to find
∫∞
0

e−ax dx and
∫

dx

x2 + a2
. A useful result is∫

dx

x2 + 1
= arctanx+ C. (1.20)

Problem 1.12 Stefan–Boltzmann law
Blackbody radiation is an electromagnetic phenomenon, so the radiation inten-
sity depends on the speed of light c. It is also a thermal phenomenon, so it
depends on the thermal energy kBT , where T is the object’s temperature and kB
is Boltzmann’s constant. And it is a quantum phenomenon, so it depends on
Planck’s constant �h. Thus the blackbody-radiation intensity I depends on c, kBT ,
and �h. Use dimensional analysis to show that I ∝ T4 and to find the constant
of proportionality σ. Then look up the missing dimensionless constant. (These
results are used in Section 5.3.3.)

Problem 1.13 Arcsine integral

Use dimensional analysis to find
∫√

1− 3x2 dx. A useful result is

∫√
1− x2 dx =

arcsin x

2
+

x
√

1− x2

2
+ C, (1.21)
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Problem 1.14 Related rates

h

Water is poured into a large inverted cone (with a 90◦ open-
ing angle) at a rate dV/dt = 10m3 s−1. When the water
depth is h = 5m, estimate the rate at which the depth is
increasing. Then use calculus to find the exact rate.

Problem 1.15 Kepler’s third law
Newton’s law of universal gravitation—the famous inverse-square law—says that
the gravitational force between two masses is

F = −
Gm1m2

r2
, (1.22)

where G is Newton’s constant, m1 and m2 are the two masses, and r is their
separation. For a planet orbiting the sun, universal gravitation together with
Newton’s second law gives

m
d2r
dt2

= −
GMm

r2
r̂, (1.23)

where M is the mass of the sun, m the mass of the planet, r is the vector from
the sun to the planet, and r̂ is the unit vector in the r direction.

How does the orbital period τ depend on orbital radius r? Look up Kepler’s
third law and compare your result to it.
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A correct solution works in all cases, including the easy ones. This maxim
underlies the second tool—the method of easy cases. It will help us guess
integrals, deduce volumes, and solve exacting differential equations.

2.1 Gaussian integral revisited

As the first application, let’s revisit the Gaussian integral from Section 1.3,∫∞
−∞

e−αx2 dx. (2.1)

Is the integral
√
πα or

√
π/α?

The correct choice must work for all α � 0. At this range’s endpoints
(α =∞ and α = 0), the integral is easy to evaluate.

What is the integral when α =∞?

e−10x2

0 1

As the first easy case, increase α to ∞. Then −αx2 be-
comes very negative, even when x is tiny. The exponen-
tial of a large negative number is tiny, so the bell curve
narrows to a sliver, and its area shrinks to zero. There-
fore, as α→∞ the integral shrinks to zero. This result refutes the option
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√
πα, which is infinite when α = ∞; and it supports the option

√
π/α,

which is zero when α =∞.

What is the integral when α = 0?

e−x2/10

0 1

In the α = 0 extreme, the bell curve flattens into a
horizontal line with unit height. Its area, integrated
over the infinite range, is infinite. This result refutes
the
√
πα option, which is zero when α = 0; and it

supports the
√
π/α option, which is infinity when α =

0. Thus the
√
πα option fails both easy-cases tests, and the

√
π/α option

passes both easy-cases tests.

If these two options were the only options, we would choose
√
π/α. How-

ever, if a third option were
√
2/α, how could you decide between it and√

π/α ? Both options pass both easy-cases tests; they also have identical
dimensions. The choice looks difficult.

To choose, try a third easy case: α = 1. Then the integral simplifies to∫∞
−∞

e−x2 dx. (2.2)

This classic integral can be evaluated in closed form by using polar coor-
dinates, but that method also requires a trick with few other applications
(textbooks on multivariable calculus give the gory details). A less elegant
but more general approach is to evaluate the integral numerically and to
use the approximate value to guess the closed form.

Therefore, replace the smooth curve e−x2 with a curve
having n line segments. This piecewise-linear approxi-
mation turns the area into a sum of n trapezoids. As
n approaches infinity, the area of the trapezoids more and more closely
approaches the area under the smooth curve.

n Area

10 2.07326300569564

20 1.77263720482665

30 1.77245385170978

40 1.77245385090552

50 1.77245385090552

The table gives the area under the curve in the
range x = −10 . . . 10, after dividing the curve
into n line segments. The areas settle onto a
stable value, and it looks familiar. It begins
with 1.7, which might arise from

√
3. However,

it continues as 1.77, which is too large to be
√
3.

Fortunately, π is slightly larger than 3, so the
area might be converging to

√
π.
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Let’s check by comparing the squared area against π:

1.772453850905522 ≈ 3.14159265358980,

π ≈ 3.14159265358979.
(2.3)

The close match suggests that the α = 1 Gaussian integral is indeed
√
π:∫∞

−∞
e−x2 dx =

√
π. (2.4)

Therefore the general Gaussian integral∫∞
−∞

e−αx2 dx (2.5)

must reduce to
√
π when α = 1. It must also behave correctly in the other

two easy cases α = 0 and α =∞.

Among the three choices
√
2/α,
√
π/α, and

√
πα, only

√
π/α passes all

three tests α = 0, 1, and ∞. Therefore,∫∞
−∞

e−αx2 dx =

√
π

α
. (2.6)

Easy cases are not the only way to judge these choices. Dimensional analy-
sis, for example, can also restrict the possibilities (Section 1.3). It even
eliminates choices like

√
π/α that pass all three easy-cases tests. However,

easy cases are, by design, simple. They do not require us to invent or
deduce dimensions for x, α, and dx (the extensive analysis of Section 1.3).
Easy cases, unlike dimensional analysis, can also eliminate choices like√
2/α with correct dimensions. Each tool has its strengths.

Problem 2.1 Testing several alternatives
For the Gaussian integral∫∞

−∞
e−αx2

dx, (2.7)

use the three easy-cases tests to evaluate the following candidates for its value.

(a)
√
π/α (b) 1+ (

√
π− 1)/α (c) 1/α2 + (

√
π− 1)/α.

Problem 2.2 Plausible, incorrect alternative
Is there an alternative to

√
π/α that has valid dimensions and passes the three

easy-cases tests?
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Problem 2.3 Guessing a closed form
Use a change of variable to show that∫∞

0

dx

1+ x2
= 2

∫1
0

dx

1+ x2
. (2.8)

The second integral has a finite integration range, so it is easier than the first
integral to evaluate numerically. Estimate the second integral using the trapezoid
approximation and a computer or programmable calculator. Then guess a closed
form for the first integral.

2.2 Plane geometry: The area of an ellipse

b

a

The second application of easy cases is from plane
geometry: the area of an ellipse. This ellipse has
semimajor axis a and semiminor axis b. For its area A

consider the following candidates:
(a) ab2 (b) a2 + b2 (c) a3/b (d) 2ab (e) πab.

What are the merits or drawbacks of each candidate?

The candidate A = ab2 has dimensions of L3, whereas an area must have
dimensions of L2. Thus ab2 must be wrong.
The candidate A = a2 + b2 has correct dimensions (as do the remaining
candidates), so the next tests are the easy cases of the radii a and b. For a,
the low extreme a = 0 produces an infinitesimally thin ellipse with zero
area. However, when a = 0 the candidate A = a2 + b2 reduces to A = b2

rather than to 0; so a2 + b2 fails the a = 0 test.
The candidate A = a3/b correctly predicts zero area when a = 0. Because
a = 0 was a useful easy case, and the axis labels a and b are almost
interchangeable, its symmetric counterpart b = 0 should also be a useful
easy case. It too produces an infinitesimally thin ellipse with zero area;
alas, the candidate a3/b predicts an infinite area, so it fails the b = 0 test.
Two candidates remain.
The candidate A = 2ab shows promise. When a = 0 or b = 0, the
actual and predicted areas are zero, so A = 2ab passes both easy-cases
tests. Further testing requires the third easy case: a = b. Then the ellipse
becomes a circle with radius a and area πa2. The candidate 2ab, however,
reduces to A = 2a2, so it fails the a = b test.
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The candidate A = πab passes all three tests: a = 0, b = 0, and a = b.
With each passing test, our confidence in the candidate increases; and
πab is indeed the correct area (Problem 2.4).

Problem 2.4 Area by calculus
Use integration to show that A = πab.

Problem 2.5 Inventing a passing candidate
Can you invent a second candidate for the area that has correct dimensions and
passes the a = 0, b = 0, and a = b tests?

Problem 2.6 Generalization
Guess the volume of an ellipsoid with principal radii a, b, and c.

2.3 Solid geometry: The volume of a truncated pyramid

The Gaussian-integral example (Section 2.1) and the ellipse-area example
(Section 2.2) showed easy cases as a method of analysis: for checking
whether formulas are correct. The next level of sophistication is to use
easy cases as a method of synthesis: for constructing formulas.

h

b

aAs an example, take a pyramid with a square base and
slice a piece from its top using a knife parallel to the
base. This truncated pyramid (called the frustum) has a
square base and square top parallel to the base. Let h be
its vertical height, b be the side length of its base, and a

be the side length of its top.

What is the volume of the truncated pyramid?

Let’s synthesize the formula for the volume. It is a function of the three
lengths h, a, and b. These lengths split into two kinds: height and
base lengths. For example, flipping the solid on its head interchanges
the meanings of a and b but preserves h; and no simple operation inter-
changes height with a or b. Thus the volume probably has two factors,
each containing a length or lengths of only one kind:

V(h, a, b) = f(h)× g(a, b). (2.9)

Proportional reasoning will determine f; a bit of dimensional reasoning
and a lot of easy-cases reasoning will determine g.
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What is f : How should the volume depend on the height?

To find f, use a proportional-reasoning thought experi-
ment. Chop the solid into vertical slivers, each like an
oil-drilling core; then imagine doubling h. This change
doubles the volume of each sliver and therefore doubles
the whole volume V . Thus f ∼ h and V ∝ h:

V = h× g(a, b). (2.10)

What is g : How should the volume depend on a and b?

Because V has dimensions of L3, the function g(a, b) has dimensions
of L2. That constraint is all that dimensional analysis can say. Further
constraints are needed to synthesize g, and these constraints are provided
by the method of easy cases.

2.3.1 Easy cases

What are the easy cases of a and b?

The easiest case is the extreme case a = 0 (an ordinary pyramid). The
symmetry between a and b suggests two further easy cases, namely a = b

and the extreme case b = 0. The easy cases are then threefold:

h

b

h

a

h

a

a = 0 b = 0 a = b

When a = 0, the solid is an ordinary pyramid, and g is a function only
of the base side length b. Because g has dimensions of L2, the only
possibility for g is g ∼ b2; in addition, V ∝ h; so, V ∼ hb2. When b = 0,
the solid is an upside-down version of the b = 0 pyramid and therefore
has volume V ∼ ha2. When a = b, the solid is a rectangular prism having
volume V = ha2 (or hb2).

Is there a volume formula that satisfies the three easy-cases constraints?
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The a = 0 and b = 0 constraints are satisfied by the symmetric sum
V ∼ h(a2 + b2). If the missing dimensionless constant is 1/2, making
V = h(a2+b2)/2, then the volume also satisfies the a = b constraint, and
the volume of an ordinary pyramid (a = 0) would be hb2/2.

When a = 0, is the prediction V = hb2/2 correct?

Testing the prediction requires finding the exact dimensionless constant
in V ∼ hb2. This task looks like a calculus problem: Slice a pyramid into
thin horizontal sections and add (integrate) their volumes. However, a
simple alternative is to apply easy cases again.

b

h = b

The easy case is easier to construct after we solve a
similar but simpler problem: to find the area of a
triangle with base b and height h. The area satisfies
A ∼ hb, but what is the dimensionless constant? To
find it, choose b and h to make an easy triangle: a
right triangle with h = b. Two such triangles make
an easy shape: a square with area b2. Thus each right triangle has area
A = b2/2; the dimensionless constant is 1/2. Now extend this reasoning
to three dimensions—find an ordinary pyramid (with a square base) that
combines with itself to make an easy solid.

What is the easy solid?

A convenient solid is suggested by the pyramid’s square
base: Perhaps each base is one face of a cube. The cube then
requires six pyramids whose tips meet in the center of the
cube; thus the pyramids have the aspect ratio h = b/2. For
numerical simplicity, let’s meet this condition with b = 2

and h = 1.
Six such pyramids form a cube with volume b3 = 8, so the volume of one
pyramid is 4/3. Because each pyramid has volume V ∼ hb2, and hb2 = 4

for these pyramids, the dimensionless constant in V ∼ hb2 must be 1/3.
The volume of an ordinary pyramid (a pyramid with a = 0) is therefore
V = hb2/3.

Problem 2.7 Triangular base
Guess the volume of a pyramid with height h and a triangular base of area A.
Assume that the top vertex lies directly over the centroid of the base. Then try
Problem 2.8.
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Problem 2.8 Vertex location
The six pyramids do not make a cube unless each pyramid’s top vertex lies
directly above the center of the base. Thus the result V = hb2/3 might apply
only with this restriction. If instead the top vertex lies above one of the base
vertices, what is the volume?

The prediction from the first three easy-cases tests was V = hb2/2 (when
a = 0), whereas the further easy case h = b/2 alongside a = 0 just showed
that V = hb2/3. The two methods are making contradictory predictions.

How can this contradiction be resolved?

The contradiction must have snuck in during one of the reasoning steps.
To find the culprit, revisit each step in turn. The argument for V ∝ h looks
correct. The three easy-case requirements—that V ∼ hb2 when a = 0, that
V ∼ ha2 when b = 0, and that V = h(a2 + b2)/2 when a = b—also look
correct. The mistake was leaping from these constraints to the prediction
V ∼ h(a2 + b2) for any a or b.

Instead let’s try the following general form that includes an ab term:

V = h(αa2 + βab+ γb2). (2.11)

Then solve for the coefficients α, β, and γ by reapplying the easy-cases
requirements.

The b = 0 test along with the h = b/2 easy case, which showed that
V = hb2/3 for an ordinary pyramid, require that α = 1/3. The a = 0

test similarly requires that γ = 1/3. And the a = b test requires that
α+ β+ γ = 1. Therefore β = 1/3 and voilà,

V =
1

3
h(a2 + ab+ b2). (2.12)

This formula, the result of proportional reasoning, dimensional analysis,
and the method of easy cases, is exact (Problem 2.9)!

Problem 2.9 Integration
Use integration to show that V = h(a2 + ab+ b2)/3.

Problem 2.10 Truncated triangular pyramid
Instead of a pyramid with a square base, start with a pyramid with an equilateral
triangle of side length b as its base. Then make the truncated solid by slicing a
piece from the top using a knife parallel to the base. In terms of the height h
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and the top and bottom side lengths a and b, what is the volume of this solid?
(See also Problem 2.7.)

Problem 2.11 Truncated cone
What is the volume of a truncated cone with a circular base of radius r1 and
circular top of radius r2 (with the top parallel to the base)? Generalize your for-
mula to the volume of a truncated pyramid with height h, a base of an arbitrary
shape and area Abase, and a corresponding top of area Atop.

2.4 Fluid mechanics: Drag

The preceding examples showed that easy cases can check and construct
formulas, but the examples can be done without easy cases (for example,
with calculus). For the next equations, from fluid mechanics, no exact
solutions are known in general, so easy cases and other street-fighting
tools are almost the only way to make progress.
Here then are the Navier–Stokes equations of fluid mechanics:

∂v
∂t

+ (v·∇)v = −
1

ρ
∇p+ ν∇2v, (2.13)

where v is the velocity of the fluid (as a function of position and time),
ρ is its density, p is the pressure, and ν is the kinematic viscosity. These
equations describe an amazing variety of phenomena including flight,
tornadoes, and river rapids.
Our example is the following home experiment on drag. Photocopy this
page while magnifying it by a factor of 2; then cut out the following two
templates:

1 in

2 in
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With each template, tape together the shaded areas to
make a cone. The two resulting cones have the same
shape, but the large cone has twice the height and width
of the small cone.

When the cones are dropped point downward, what is the
approximate ratio of their terminal speeds (the speeds at which drag balances
weight)?

The Navier–Stokes equations contain the answer to this question. Finding
the terminal speed involves four steps.

Step 1. Impose boundary conditions. The conditions include the motion
of the cone and the requirement that no fluid enters the paper.

Step 2. Solve the equations, together with the continuity equation ∇·v =

0, in order to find the pressure and velocity at the surface of the
cone.

Step 3. Use the pressure and velocity to find the pressure and velocity
gradient at the surface of the cone; then integrate the resulting
forces to find the net force and torque on the cone.

Step 4. Use the net force and torque to find the motion of the cone. This
step is difficult because the resulting motion must be consistent
with the motion assumed in step 1. If it is not consistent, go back
to step 1, assume a different motion, and hope for better luck
upon reaching this step.

Unfortunately, the Navier–Stokes equations are coupled and nonlinear
partial-differential equations. Their solutions are known only in very
simple cases: for example, a sphere moving very slowly in a viscous fluid,
or a sphere moving at any speed in a zero-viscosity fluid. There is little
hope of solving for the complicated flow around an irregular, quivering
shape such as a flexible paper cone.

Problem 2.12 Checking dimensions in the Navier–Stokes equations
Check that the first three terms of the Navier–Stokes equations have identical
dimensions.

Problem 2.13 Dimensions of kinematic viscosity
From the Navier–Stokes equations, find the dimensions of kinematic viscosity ν.
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2.4.1 Using dimensions

Because a direct solution of the Navier–Stokes equations is out of the
question, let’s use the methods of dimensional analysis and easy cases. A
direct approach is to use them to deduce the terminal velocity itself. An
indirect approach is to deduce the drag force as a function of fall speed
and then to find the speed at which the drag balances the weight of
the cones. This two-step approach simplifies the problem. It introduces
only one new quantity (the drag force) but eliminates two quantities: the
gravitational acceleration and the mass of the cone.

Problem 2.14 Explaining the simplification
Why is the drag force independent of the gravitational acceleration g and of the
cone’s mass m (yet the force depends on the cone’s shape and size)?

The principle of dimensions is that all terms in a valid equation have
identical dimensions. Applied to the drag force F, it means that in the
equation F = f(quantities that affect F) both sides have dimensions of
force. Therefore, the strategy is to find the quantities that affect F, find
their dimensions, and then combine the quantities into a quantity with
dimensions of force.

On what quantities does the drag depend, and what are their dimensions?

v speed of the cone LT−1

r size of the cone L

ρ density of air ML−3

ν viscosity of air L2T−1

The drag force depends on four quan-
tities: two parameters of the cone and
two parameters of the fluid (air). (For
the dimensions of ν, see Problem 2.13.)

Do any combinations of the four parameters
v, r, ρ, and ν have dimensions of force?

The next step is to combine v, r, ρ, and ν into a quantity with dimensions
of force. Unfortunately, the possibilities are numerous—for example,

F1 = ρv2r2,

F2 = ρνvr,
(2.14)

or the product combinations
√
F1F2 and F21/F2. Any sum of these ugly

products is also a force, so the drag force F could be
√
F1F2 + F21/F2,

3
√
F1F2 − 2F21/F2, or much worse.
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Narrowing the possibilities requires a method more sophisticated than
simply guessing combinations with correct dimensions. To develop the
sophisticated approach, return to the first principle of dimensions: All
terms in an equation have identical dimensions. This principle applies to
any statement about drag such as

A+ B = C (2.15)

where the blobs A, B, and C are functions of F, v, r, ρ, and ν.

Although the blobs can be absurdly complex functions, they have identical
dimensions. Therefore, dividing each term by A, which produces the
equation

A

A
+

B

A
=

C

A
, (2.16)

makes each term dimensionless. The same method turns any valid equa-
tion into a dimensionless equation. Thus, any (true) equation describing
the world can be written in a dimensionless form.

Any dimensionless form can be built from dimensionless groups: from
dimensionless products of the variables. Because any equation describing
the world can be written in a dimensionless form, and any dimensionless
form can be written using dimensionless groups, any equation describing
the world can be written using dimensionless groups.

Is the free-fall example (Section 1.2) consistent with this principle?

Before applying this principle to the complicated problem of drag, try it in
the simple example of free fall (Section 1.2). The exact impact speed of an
object dropped from a height h is v =

√
2gh, where g is the gravitational

acceleration. This result can indeed be written in the dimensionless form
v/
√
gh =

√
2, which itself uses only the dimensionless group v/

√
gh. The

new principle passes its first test.

This dimensionless-group analysis of formulas, when reversed, becomes
a method of synthesis. Let’s warm up by synthesizing the impact speed v.
First, list the quantities in the problem; here, they are v, g, and h. Second,
combine these quantities into dimensionless groups. Here, all dimension-
less groups can be constructed just from one group. For that group, let’s
choose v2/gh (the particular choice does not affect the conclusion). Then
the only possible dimensionless statement is



2.4 Fluid mechanics: Drag 25

v2

gh
= dimensionless constant. (2.17)

(The right side is a dimensionless constant because no second group is
available to use there.) In other words, v2/gh ∼ 1 or v ∼

√
gh.

This result reproduces the result of the less sophisticated dimensional
analysis in Section 1.2. Indeed, with only one dimensionless group, either
analysis leads to the same conclusion. However, in hard problems—for
example, finding the drag force—the less sophisticated method does not
provide its constraint in a useful form; then the method of dimensionless
groups is essential.

Problem 2.15 Fall time
Synthesize an approximate formula for the free-fall time t from g and h.

Problem 2.16 Kepler’s third law
Synthesize Kepler’s third law connecting the orbital period of a planet to its
orbital radius. (See also Problem 1.15.)

What dimensionless groups can be constructed for the drag problem?

One dimensionless group could be F/ρv2r2; a second group could be rv/ν.
Any other group can be constructed from these groups (Problem 2.17), so
the problem is described by two independent dimensionless groups. The
most general dimensionless statement is then

one group = f(second group), (2.18)

where f is a still-unknown (but dimensionless) function.

Which dimensionless group belongs on the left side?

The goal is to synthesize a formula for F, and F appears only in the first
group F/ρv2r2. With that constraint in mind, place the first group on the
left side rather than wrapping it in the still-mysterious function f. With
this choice, the most general statement about drag force is

F

ρv2r2
= f
(rv
ν

)
. (2.19)

The physics of the (steady-state) drag force on the cone is all contained
in the dimensionless function f.
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Problem 2.17 Only two groups
Show that F, v, r, ρ, and ν produce only two independent dimensionless groups.

Problem 2.18 How many groups in general?
Is there a general method to predict the number of independent dimensionless
groups? (The answer was given in 1914 by Buckingham [9].)

The procedure might seem pointless, having produced a drag force that
depends on the unknown function f. But it has greatly improved our
chances of finding f. The original problem formulation required guess-
ing the four-variable function h in F = h(v, r, ρ, ν), whereas dimensional
analysis reduced the problem to guessing a function of only one variable
(the ratio vr/ν). The value of this simplification was eloquently described
by the statistician and physicist Harold Jeffreys (quoted in [34, p. 82]):

A good table of functions of one variable may require a page; that of a function
of two variables a volume; that of a function of three variables a bookcase;
and that of a function of four variables a library.

Problem 2.19 Dimensionless groups for the truncated pyramid
The truncated pyramid of Section 2.3 has volume

V =
1

3
h(a2 + ab+ b2). (2.20)

Make dimensionless groups from V , h, a, and b, and rewrite the volume using
these groups. (There are many ways to do so.)

2.4.2 Using easy cases

Although improved, our chances do not look high: Even the one-variable
drag problem has no exact solution. But it might have exact solutions in
its easy cases. Because the easiest cases are often extreme cases, look first
at the extreme cases.

Extreme cases of what?

The unknown function f depends on only rv/ν,
F

ρv2r2
= f
(rv
ν

)
, (2.21)

so try extremes of rv/ν. However, to avoid lapsing into mindless sym-
bol pushing, first determine the meaning of rv/ν. This combination rv/ν,
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often denoted Re, is the famous Reynolds number. (Its physical interpreta-
tion requires the technique of lumping and is explained in Section 3.4.3.)

The Reynolds number affects the drag force via the unknown function f:
F

ρv2r2
= f (Re) . (2.22)

With luck, f can be deduced at extremes of the Reynolds number; with
further luck, the falling cones are an example of one extreme.

Are the falling cones an extreme of the Reynolds number?

The Reynolds number depends on r, v, and ν. For the speed v, everyday
experience suggests that the cones fall at roughly 1m s−1 (within, say, a
factor of 2). The size r is roughly 0.1m (again within a factor of 2). And
the kinematic viscosity of air is ν ∼ 10−5 m2 s−1. The Reynolds number is

r︷ ︸︸ ︷
0.1m×

v︷ ︸︸ ︷
1m s−1

10−5 m2 s−1︸ ︷︷ ︸
ν

∼ 104. (2.23)

It is significantly greater than 1, so the falling cones are an extreme case
of high Reynolds number. (For low Reynolds number, try Problem 2.27
and see [38].)

Problem 2.20 Reynolds numbers in everyday flows
Estimate Re for a submarine cruising underwater, a falling pollen grain, a falling
raindrop, and a 747 crossing the Atlantic.

The high-Reynolds-number limit can be reached many ways. One way
is to shrink the viscosity ν to 0, because ν lives in the denominator of
the Reynolds number. Therefore, in the limit of high Reynolds number,
viscosity disappears from the problem and the drag force should not de-
pend on viscosity. This reasoning contains several subtle untruths, yet its
conclusion is mostly correct. (Clarifying the subtleties required two cen-
turies of progress in mathematics, culminating in singular perturbations
and the theory of boundary layers [12, 46].)

Viscosity affects the drag force only through the Reynolds number:
F

ρv2r2
= f
(rv
ν

)
. (2.24)
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To make F independent of viscosity, F must be independent of Reynolds
number! The problem then contains only one independent dimensionless
group, F/ρv2r2, so the most general statement about drag is

F

ρv2r2
= dimensionless constant. (2.25)

The drag force itself is then F ∼ ρv2r2. Because r2 is proportional to the
cone’s cross-sectional area A, the drag force is commonly written

F ∼ ρv2A. (2.26)

Although the derivation was for falling cones, the result applies to any
object as long as the Reynolds number is high. The shape affects only
the missing dimensionless constant. For a sphere, it is roughly 1/4; for a
long cylinder moving perpendicular to its axis, it is roughly 1/2; and for
a flat plate moving perpendicular to its face, it is roughly 1.

2.4.3 Terminal velocities

Fdrag

W = mg

The result F ∼ ρv2A is enough to predict the terminal veloci-
ties of the cones. Terminal velocity means zero acceleration,
so the drag force must balance the weight. The weight is
W = σpaperApaperg, where σpaper is the areal density of paper
(mass per area) and Apaper is the area of the template after
cutting out the quarter section. Because Apaper is comparable
to the cross-sectional area A, the weight is roughly given by

W ∼ σpaperAg. (2.27)

Therefore,

ρv2A︸ ︷︷ ︸
drag

∼ σpaperAg︸ ︷︷ ︸
weight

. (2.28)

The area divides out and the terminal velocity becomes

v ∼

√
gσpaper

ρ
. (2.29)

All cones constructed from the same paper and having the same shape,
whatever their size, fall at the same speed!
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To test this prediction, I constructed the small and large cones described
on page 21, held one in each hand above my head, and let them fall. Their
2m fall lasted roughly 2 s, and they landed within 0.1 s of one another.
Cheap experiment and cheap theory agree!

Problem 2.21 Home experiment of a small versus a large cone
Try the cone home experiment yourself (page 21).

Problem 2.22 Home experiment of four stacked cones versus one cone
Predict the ratio

terminal velocity of four small cones stacked inside each other
terminal velocity of one small cone

. (2.30)

Test your prediction. Can you find a method not requiring timing equipment?

Problem 2.23 Estimating the terminal speed
Estimate or look up the areal density of paper; predict the cones’ terminal speed;
and then compare that prediction to the result of the home experiment.

2.5 Summary and further problems

A correct solution works in all cases, including the easy ones. There-
fore, check any proposed formula in the easy cases, and guess formulas
by constructing expressions that pass all easy-cases tests. To apply and
extend these ideas, try the following problems and see the concise and
instructive book by Cipra [10].

Problem 2.24 Fencepost errors
A garden has 10m of horizontal fencing that you would like to divide into 1m
segments by using vertical posts. Do you need 10 or 11 vertical posts (including
the posts needed at the ends)?

Problem 2.25 Odd sum
Here is the sum of the first n odd integers:

Sn = 1+ 3+ 5+ · · ·+ ln︸ ︷︷ ︸
n terms

(2.31)

a. Does the last term ln equal 2n+ 1 or 2n− 1?

b. Use easy cases to guess Sn (as a function of n).

An alternative solution is discussed in Section 4.1.
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Problem 2.26 Free fall with initial velocity
The ball in Section 1.2 was released from rest. Now imagine that it is given an
initial velocity v0 (where positive v0 means an upward throw). Guess the impact
velocity vi.

Then solve the free-fall differential equation to find the exact vi, and compare
the exact result to your guess.

Problem 2.27 Low Reynolds number
In the limit Re� 1, guess the form of f in

F

ρv2r2
= f
(rv
ν

)
. (2.32)

The result, when combined with the correct dimensionless constant, is known
as Stokes drag [12].

Problem 2.28 Range formula

v

R

θ

How far does a rock travel horizontally (no air resistance)?
Use dimensions and easy cases to guess a formula for the
range R as a function of the launch velocity v, the launch
angle θ, and the gravitational acceleration g.

Problem 2.29 Spring equation
The angular frequency of an ideal mass–spring system (Section 3.4.2) is

√
k/m,

where k is the spring constant and m is the mass. This expression has the spring
constant k in the numerator. Use extreme cases of k or m to decide whether that
placement is correct.

Problem 2.30 Taping the cone templates
The tape mark on the large cone template (page 21) is twice as wide as the tape
mark on the small cone template. In other words, if the tape on the large cone
is, say, 6mm wide, the tape on the small cone should be 3mm wide. Why?
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Where will an orbiting planet be 6 months from now? To predict its new
location, we cannot simply multiply the 6 months by the planet’s current
velocity, for its velocity constantly varies. Such calculations are the reason
that calculus was invented. Its fundamental idea is to divide the time into
tiny intervals over which the velocity is constant, to multiply each tiny
time by the corresponding velocity to compute a tiny distance, and then
to add the tiny distances.
Amazingly, this computation can often be done exactly, even when the
intervals have infinitesimal width and are therefore infinite in number.
However, the symbolic manipulations can be lengthy and, worse, are
often rendered impossible by even small changes to the problem. Using
calculus methods, for example, we can exactly calculate the area under
the Gaussian e−x2 between x = 0 and ∞; yet if either limit is any value
except zero or infinity, an exact calculation becomes impossible.
In contrast, approximate methods are robust: They almost always provide
a reasonable answer. And the least accurate but most robust method is
lumping. Instead of dividing a changing process into many tiny pieces,
group or lump it into one or two pieces. This simple approximation and
its advantages are illustrated using examples ranging from demographics
(Section 3.1) to nonlinear differential equations (Section 3.5).
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3.1 Estimating populations: How many babies?

The first example is to estimate the number of babies in the United States.
For definiteness, call a child a baby until he or she turns 2 years old. An
exact calculation requires the birth dates of every person in the United
States. This, or closely similar, information is collected once every decade
by the US Census Bureau.

age (yr)

106

yr

0 50
0

4

N(t)

As an approximation to this voluminous
data, the Census Bureau [47] publishes
the number of people at each age. The
data for 1991 is a set of points lying on a
wiggly line N(t), where t is age. Then

Nbabies =

∫ 2 yr

0

N(t)dt. (3.1)

Problem 3.1 Dimensions of the vertical axis
Why is the vertical axis labeled in units of people per year rather than in units
of people? Equivalently, why does the axis have dimensions of T−1?

This method has several problems. First, it depends on the huge resources
of the US Census Bureau, so it is not usable on a desert island for back-
of-the-envelope calculations. Second, it requires integrating a curve with
no analytic form, so the integration must be done numerically. Third, the
integral is of data specific to this problem, whereas mathematics should
be about generality. An exact integration, in short, provides little insight
and has minimal transfer value. Instead of integrating the population
curve exactly, approximate it—lump the curve into one rectangle.

What are the height and width of this rectangle?

The rectangle’s width is a time, and a plausible time related to populations
is the life expectancy. It is roughly 80 years, so make 80 years the width
by pretending that everyone dies abruptly on his or her 80th birthday.
The rectangle’s height can be computed from the rectangle’s area, which
is the US population—conveniently 300 million in 2008. Therefore,

height = area
width ∼

3× 108

75 yr . (3.2)

Why did the life expectancy drop from 80 to 75 years?
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babies

lumped

age (yr)

106

yr

0 75
0

4

census data

Fudging the life expectancy simplifies the
mental division: 75 divides easily into 3 and
300. The inaccuracy is no larger than the
error made by lumping, and it might even
cancel the lumping error. Using 75 years as
the width makes the height approximately
4× 106 yr−1.

Integrating the population curve over the range t = 0 . . . 2 yr becomes just
multiplication:

Nbabies ∼ 4× 106 yr−1︸ ︷︷ ︸
height

× 2 yr︸︷︷︸
infancy

= 8× 106. (3.3)

The Census Bureau’s figure is very close: 7.980 × 106. The error from
lumping canceled the error from fudging the life expectancy to 75 years!

Problem 3.2 Landfill volume
Estimate the US landfill volume used annually by disposable diapers.

Problem 3.3 Industry revenues
Estimate the annual revenue of the US diaper industry.

3.2 Estimating integrals

The US population curve (Section 3.1) was difficult to integrate partly be-
cause it was unknown. But even well-known functions can be difficult to
integrate. In such cases, two lumping methods are particularly useful: the
1/e heuristic (Section 3.2.1) and the full width at half maximum (FWHM)
heuristic (Section 3.2.2).

3.2.1 1/e heuristic

0

1

0 1
t

. . .

e−t

Electronic circuits, atmospheric pressure, and radioac-
tive decay contain the ubiquitous exponential and its
integral (given here in dimensionless form)∫∞

0

e−t dt. (3.4)
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To approximate its value, let’s lump the e−t curve into one rectangle.

What values should be chosen for the width and height of the rectangle?

lumped

0

1

0 1
t

e−t

A reasonable height for the rectangle is the maximum
of e−t, namely 1. To choose its width, use significant
change as the criterion (a method used again in Sec-
tion 3.3.3): Choose a significant change in e−t; then
find the width Δt that produces this change. In an
exponential decay, a simple and natural significant
change is when e−t becomes a factor of e closer to
its final value (which is 0 here because t goes to ∞). With this criterion,
Δt = 1. The lumping rectangle then has unit area—which is the exact
value of the integral!

e−x2

0 1−1

Encouraged by this result, let’s try the heuristic on
the difficult integral∫∞

−∞
e−x2 dx. (3.5)

0 1−1

Again lump the area into a single rectangle. Its height
is the maximum of e−x2 , which is 1. Its width is
enough that e−x2 falls by a factor of e. This drop hap-
pens at x = ±1, so the width is Δx = 2 and its area
is 1 × 2. The exact area is

√
π ≈ 1.77 (Section 2.1),

so lumping makes an error of only 13%: For such a short derivation, the
accuracy is extremely high.

Problem 3.4 General exponential decay
Use lumping to estimate the integral∫∞

0
e−at dt. (3.6)

Use dimensional analysis and easy cases to check that your answer makes sense.

Problem 3.5 Atmospheric pressure
Atmospheric density ρ decays roughly exponentially with height z:

ρ ∼ ρ0e
−z/H, (3.7)

where ρ0 is the density at sea level, and H is the so-called scale height (the
height at which the density falls by a factor of e). Use your everyday experience
to estimate H.
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Then estimate the atmospheric pressure at sea level by estimating the weight of
an infinitely high cylinder of air.

Problem 3.6 Cone free-fall distance
Roughly how far does a cone of Section 2.4 fall before reaching a significant
fraction of its terminal velocity? How large is that distance compared to the
drop height of 2m? Hint: Sketch (very roughly) the cone’s acceleration versus
time and make a lumping approximation.

3.2.2 Full width at half maximum

Another reasonable lumping heuristic arose in the early days of spec-
troscopy. As a spectroscope swept through a range of wavelengths, a
chart recorder would plot how strongly a molecule absorbed radiation
of that wavelength. This curve contains many peaks whose location and
area reveal the structure of the molecule (and were essential in developing
quantum theory [14]). But decades before digital chart recorders existed,
how could the areas of the peaks be computed?
They were computed by lumping the peak into a rectangle whose height is
the height of the peak and whose width is the full width at half maximum
(FWHM). Where the 1/e heuristic uses a factor of e as the significant
change, the FWHM heuristic uses a factor of 2.
Try this recipe on the Gaussian integral

∫∞
−∞ e−x2 dx.

√
ln2−

√
ln2

FWHM

The maximum height of e−x2 is 1, so the half maxima
are at x = ±√ln 2 and the full width is 2

√
ln 2. The

lumped rectangle therefore has area 2
√
ln 2 ≈ 1.665.

The exact area is
√
π ≈ 1.77 (Section 2.1): The FWHM

heuristic makes an error of only 6%, which is roughly
one-half the error of the 1/e heuristic.

Problem 3.7 Trying the FWHM heuristic
Make single-rectangle lumping estimates of the following integrals. Choose the
height and width of the rectangle using the FWHM heuristic. How accurate is
each estimate?

a.
∫∞
−∞

1

1+ x2
dx [exact value: π].

b.
∫∞
−∞

e−x4

dx [exact value: Γ(1/4)/2 ≈ 1.813].
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3.2.3 Stirling’s approximation

The 1/e and FWHM lumping heuristics next help us approximate the
ubiquitous factorial function n!; this function’s uses range from proba-
bility theory to statistical mechanics and the analysis of algorithms. For
positive integers, n! is defined as n × (n − 1) × (n − 2) × · · · × 2 × 1. In
this discrete form, it is difficult to approximate. However, the integral
representation for n!,

n! ≡
∫∞
0

tne−t dt, (3.8)

provides a definition even when n is not a positive integer—and this
integral can be approximated using lumping.
The lumping analysis will generate almost all of Stirling’s famous approx-
imation formula

n! ≈ nne−n
√
2πn. (3.9)

Lumping requires a peak, but does the integrand tne−t have a peak?

To understand the integrand tne−t or tn/et, examine the extreme cases
of t. When t = 0, the integrand is 0. In the opposite extreme, t → ∞,
the polynomial factor tn makes the product infinity while the exponential
factor e−t makes it zero. Who wins that struggle? The Taylor series for
et contains every power of t (and with positive coefficients), so it is an
increasing, infinite-degree polynomial. Therefore, as t goes to infinity, et
outruns any polynomial tn and makes the integrand tn/et equal 0 in the
t→∞ extreme. Being zero at both extremes, the integrand must have a
peak in between. In fact, it has exactly one peak. (Can you show that?)

1

te−t

2

t2e−t

3

t3e−tIncreasing n strengthens the polynomial factor
tn, so tn survives until higher t before et outruns
it. Therefore, the peak of tn/et shifts right as
n increases. The graph confirms this prediction
and suggests that the peak occurs at t = n. Let’s
check by using calculus to maximize tne−t or,
more simply, to maximize its logarithm f(t) =

n ln t − t. At a peak, a function has zero slope.
Because df/dt = n/t−1, the peak occurs at tpeak = n, when the integrand
tne−t is nne−n—thus reproducing the largest and most important factor
in Stirling’s formula.
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tne−t

2Δt

nn/en

What is a reasonable lumping rectangle?

The rectangle’s height is the peak height nne−n.
For the rectangle’s width, use either the 1/e or
the FWHM heuristics. Because both heuristic re-
quire approximating tne−t, expand its logarithm
f(t) in a Taylor series around its peak at t = n:

f(n+ Δt) = f(n) + Δt
df

dt

∣∣∣
t=n

+
(Δt)2

2

d2f

dt2

∣∣∣
t=n

+ · · · . (3.10)

The second term of the Taylor expansion vanishes because f(t) has zero
slope at the peak. In the third term, the second derivative d2f/dt2 at
t = n is −n/t2 or −1/n. Thus,

f(n+ Δt) ≈ f(n) −
(Δt)2

2n
. (3.11)

To decrease tne−t by a factor of F requires decreasing f(t) by ln F. This
choice means Δt =

√
2n ln F. Because the rectangle’s width is 2Δt, the

lumped-area estimate of n! is

n! ∼ nne−n
√
n×

{√
8 (1/e criterion: F = e)√
8 ln 2 (FWHM criterion: F = 2).

(3.12)

For comparison, Stirling’s formula is n! ≈ nne−n
√
2πn. Lumping has

explained almost every factor. The nne−n factor is the height of the rec-
tangle, and the

√
n factor is from the width of the rectangle. Although

the exact
√
2π factor remains mysterious (Problem 3.9), it is approximated

to within 13% (the 1/e heuristic) or 6% (the FWHM heuristic).

Problem 3.8 Coincidence?
The FWHM approximation for the area under a Gaussian (Section 3.2.2) was
also accurate to 6%. Coincidence?

Problem 3.9 Exact constant in Stirling’s formula
Where does the more accurate constant factor of

√
2π come from?

3.3 Estimating derivatives

In the preceding examples, lumping helped estimate integrals. Because
integration and differentiation are closely related, lumping also provides
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a method for estimating derivatives. The method begins with a dimen-
sional observation about derivatives. A derivative is a ratio of differentials;
for example, df/dx is the ratio of df to dx. Because d is dimensionless
(Section 1.3.2), the dimensions of df/dx are the dimensions of f/x. This
useful, surprising conclusion is worth testing with a familiar example:
Differentiating height y with respect to time t produces velocity dy/dt,
whose dimensions of LT−1 are indeed the dimensions of y/t.

Problem 3.10 Dimensions of a second derivative
What are the dimensions of d2f/dx2?

3.3.1 Secant approximation

x

x2

secant

tangent

As df/dx and f/x have identical dimensions,
perhaps their magnitudes are similar:

df

dx
∼
f

x
. (3.13)

Geometrically, the derivative df/dx is the slope
of the tangent line, whereas the approximation
f/x is the slope of the secant line. By replac-
ing the curve with the secant line, we make a
lumping approximation.
Let’s test the approximation on an easy function such as f(x) = x2. Good
news—the secant and tangent slopes differ only by a factor of 2:

df

dx
= 2x and f(x)

x
= x. (3.14)

Problem 3.11 Higher powers
Investigate the secant approximation for f(x) = xn.

Problem 3.12 Second derivatives
Use the secant approximation to estimate d2f/dx2 with f(x) = x2. How does
the approximation compare to the exact second derivative?

How accurate is the secant approximation for f(x) = x2 + 100?

The secant approximation is quick and useful but can make large errors.
When f(x) = x2 + 100, for example, the secant and tangent at x = 1
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have dramatically different slopes. The tangent slope df/dx is 2, whereas
the secant slope f(1)/1 is 101. The ratio of these two slopes, although
dimensionless, is distressingly large.

Problem 3.13 Investigating the discrepancy
With f(x) = x2 + 100, sketch the ratio

secant slope
tangent slope

(3.15)

as a function of x. The ratio is not constant! Why is the dimensionless factor not
constant? (That question is tricky.)

The large discrepancy in replacing the derivative df/dx, which is

lim
Δx→0

f(x) − f(x− Δx)

Δx
, (3.16)

with the secant slope f(x)/x is due to two approximations. The first
approximation is to take Δx = x rather than Δx = 0. Then df/dx ≈
(f(x) − f(0))/x. This first approximation produces the slope of the line
from (0, f(0)) to (x, f(x)). The second approximation replaces f(0) with
0, which produces df/dx ≈ f/x; that ratio is the slope of the secant from
(0, 0) to (x, f(x)).

3.3.2 Improved secant approximation

x

x2 +C

x = 0 secant
tangent

The second approximation is fixed by start-
ing the secant at (0, f(0)) instead of (0, 0).

With that change, what are the secant and tan-
gent slopes when f(x) = x2 + C?

Call the secant starting at (0, 0) the origin
secant; call the new secant the x = 0 secant.
Then the x = 0 secant always has one-half
the slope of the tangent, no matter the constant C. The x = 0 secant
approximation is robust against—is unaffected by—vertical translation.

How robust is the x = 0 secant approximation against horizontal translation?

To investigate how the x = 0 secant handles horizontal translation, trans-
late f(x) = x2 rightward by 100 to make f(x) = (x−100)2. At the parabola’s
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vertex x = 100, the x = 0 secant, from (0, 104) to (100, 0), has slope −100;
however, the tangent has zero slope. Thus the x = 0 secant, although an
improvement on the origin secant, is affected by horizontal translation.

3.3.3 Significant-change approximation

The derivative itself is unaffected by horizontal and vertical translation,
so a derivative suitably approximated might be translation invariant. An
approximate derivative is

df

dx
≈ f(x+ Δx) − f(x)

Δx
, (3.17)

where Δx is not zero but is still small.

How small should Δx be? Is Δx = 0.01 small enough?

The choice Δx = 0.01 has two defects. First, it cannot work when x has
dimensions. If x is a length, what length is small enough? Choosing Δx =

1mm is probably small enough for computing derivatives related to the
solar system, but is probably too large for computing derivatives related
to falling fog droplets. Second, no fixed choice can be scale invariant.
Although Δx = 0.01 produces accurate derivatives when f(x) = sin x, it
fails when f(x) = sin 1000x, the result of simply rescaling x to 1000x.

These problems suggest trying the following significant-change approxi-
mation:

df

dx
∼

significant Δf (change in f) at x
Δx that produces a significant Δf. (3.18)

Because the Δx here is defined by the properties of the curve at the point
of interest, without favoring particular coordinate values or values of Δx,
the approximation is scale and translation invariant.

cosx

(0, 1)(0, 1)

(2π,1)(2π,1)

origin secant

x = 0 secant

To illustrate this approximation, let’s try
f(x) = cos x and estimate df/dx at x =

3π/2 with the three approximations: the
origin secant, the x = 0 secant, and the
significant-change approximation. The
origin secant goes from (0, 0) to (3π/2, 0),
so it has zero slope. It is a poor approxi-
mation to the exact slope of 1. The x = 0
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secant goes from (0, 1) to (3π/2, 0), so it has a slope of −2/3π, which is
worse than predicting zero slope because even the sign is wrong!

cosx

(2π,1)(2π,1)

(3π
2 , 0)(3π
2 , 0)

(5π
3 , 1

2 )(5π
3 , 1

2 )

The significant-change approximation might pro-
vide more accuracy. What is a significant change
in f(x) = cos x? Because the cosine changes by 2

(from −1 to 1), call 1/2 a significant change in f(x).
That change happens when x changes from 3π/2,
where f(x) = 0, to 3π/2 + π/6, where f(x) = 1/2.
In other words, Δx is π/6. The approximate de-
rivative is therefore

df

dx
∼

significant Δf near x

Δx ∼
1/2

π/6
=

3

π
. (3.19)

This estimate is approximately 0.955—amazingly close to the true deriva-
tive of 1.

Problem 3.14 Derivative of a quadratic
With f(x) = x2, estimate df/dx at x = 5 using three approximations: the origin
secant, the x = 0 secant, and the significant-change approximation. Compare
these estimates to the true slope.

Problem 3.15 Derivative of the logarithm
Use the significant-change approximation to estimate the derivative of ln x at
x = 10. Compare the estimate to the true slope.

Problem 3.16 Lennard–Jones potential
The Lennard–Jones potential is a model of the interaction energy between two
nonpolar molecules such as N2 or CH4. It has the form

V(r) = 4ε

[(σ
r

)12
−
(σ
r

)6]
, (3.20)

where r is the distance between the molecules, and ε and σ are constants that
depend on the molecules. Use the origin secant to estimate r0, the separation r

at which V(r) is a minimum. Compare the estimate to the true r0 found using
calculus.

Problem 3.17 Approximate maxima and minima
Let f(x) be an increasing function and g(x) a decreasing function. Use the origin
secant to show, approximately, that h(x) = f(x) + g(x) has a minimum where
f(x) = g(x). This useful rule of thumb, which generalizes Problem 3.16, is often
called the balancing heuristic.
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3.4 Analyzing differential equations: The spring–mass system

Estimating derivatives reduces differentiation to division (Section 3.3); it
thereby reduces differential equations to algebraic equations.

k

m

x0

To produce an example equation to analyze, con-
nect a block of mass m to an ideal spring with
spring constant (stiffness) k, pull the block a dis-
tance x0 to the right relative to the equilibrium
position x = 0, and release it at time t = 0. The block oscillates back and
forth, its position x described by the ideal-spring differential equation

m
d2x

dt2
+ kx = 0. (3.21)

Let’s approximate the equation and thereby estimate the oscillation fre-
quency.

3.4.1 Checking dimensions

Upon seeing any equation, first check its dimensions (Chapter 1). If
all terms do not have identical dimensions, the equation is not worth
solving—a great savings of effort. If the dimensions match, the check has
prompted reflection on the meaning of the terms; this reflection helps
prepare for solving the equation and for understanding any solution.

What are the dimensions of the two terms in the spring equation?

Look first at the simple second term kx. It arises from Hooke’s law, which
says that an ideal spring exerts a force kx where x is the extension of the
spring relative to its equilibrium length. Thus the second term kx is a
force. Is the first term also a force?
The first term m(d2x/dt2) contains the second derivative d2x/dt2, which is
familiar as an acceleration. Many differential equations, however, contain
unfamiliar derivatives. The Navier–Stokes equations of fluid mechanics
(Section 2.4),

∂v
∂t

+ (v·∇)v = −
1

ρ
∇p+ ν∇2v, (3.22)

contain two strange derivatives: (v·∇)v and ∇2v. What are the dimen-
sions of those terms?
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To practice for later handling such complicated terms, let’s now find the
dimensions of d2x/dt2 by hand. Because d2x/dt2 contains two exponents
of 2, and x is length and t is time, d2x/dt2 might plausibly have dimen-
sions of L2T−2.

Are L2T−2 the correct dimensions?

To decide, use the idea from Section 1.3.2 that the differential symbol d
means “a little bit of.” The numerator d2x, meaning d of dx, is “a little
bit of a little bit of x.” Thus, it is a length. The denominator dt2 could
plausibly mean (dt)2 or d(t2). [It turns out to mean (dt)2.] In either case,
its dimensions are T2. Therefore, the dimensions of the second derivative
are LT−2:[

d2x

dt2

]
= LT−2. (3.23)

This combination is an acceleration, so the spring equation’s first term
m(d2x/dt2) is mass times acceleration—giving it the same dimensions as
the kx term.

Problem 3.18 Dimensions of spring constant
What are the dimensions of the spring constant k?

3.4.2 Estimating the magnitudes of the terms

The spring equation passes the dimensions test, so it is worth analyzing
to find the oscillation frequency. The method is to replace each term with
its approximate magnitude. These replacements will turn a complicated
differential equation into a simple algebraic equation for the frequency.

To approximate the first term m(d2x/dt2), use the significant-change ap-
proximation (Section 3.3.3) to estimate the magnitude of the acceleration
d2x/dt2.

d2x

dt2
∼

significant Δx
(Δt that produces a significant Δx)2

. (3.24)

Problem 3.19 Explaining the exponents
The numerator contains only the first power of Δx, whereas the denominator
contains the second power of Δt. How can that discrepancy be correct?
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To evaluate this approximate acceleration, first decide on a significant
Δx—on what constitutes a significant change in the mass’s position. The
mass moves between the points x = −x0 and x = +x0, so a significant
change in position should be a significant fraction of the peak-to-peak
amplitude 2x0. The simplest choice is Δx = x0.
Now estimate Δt: the time for the block to move a distance comparable
to Δx. This time—called the characteristic time of the system—is related
to the oscillation period T . During one period, the mass moves back
and forth and travels a distance 4x0—much farther than x0. If Δt were,
say, T/4 or T/2π, then in the time Δt the mass would travel a distance
comparable to x0. Those choices for Δt have a natural interpretation as
being approximately 1/ω, where the angular frequency ω is connected
to the period by the definition ω ≡ 2π/T . With the preceding choices for
Δx and Δt, the m(d2x/dt2) term is roughly mx0ω

2.

What does “is roughly” mean?

The phrase cannot mean that mx0ω
2 and m(d2x/dt2) are within, say, a

factor of 2, because m(d2x/dt2) varies and mx0/τ
2 is constant. Rather, “is

roughly” means that a typical or characteristic magnitude of m(d2x/dt2)—
for example, its root-mean-square value—is comparable to mx0ω

2. Let’s
include this meaning within the twiddle notation ∼. Then the typical-
magnitude estimate can be written

m
d2x

dt2
∼ mx0ω

2. (3.25)

With the same meaning of “is roughly”, namely that the typical magni-
tudes are comparable, the spring equation’s second term kx is roughly kx0.
The two terms must add to zero—a consequence of the spring equation

m
d2x

dt2
+ kx = 0. (3.26)

Therefore, the magnitudes of the two terms are comparable:

mx0ω
2 ∼ kx0. (3.27)

The amplitude x0 divides out! With x0 gone, the frequency ω and oscil-
lation period T = 2π/ω are independent of amplitude. [This reasoning
uses several approximations, but this conclusion is exact (Problem 3.20).]
The approximated angular frequency ω is then

√
k/m.
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For comparison, the exact solution of the spring differential equation is,
from Problem 3.22,

x = x0 cosωt, (3.28)

where ω is
√
k/m. The approximated angular frequency is also exact!

Problem 3.20 Amplitude independence
Use dimensional analysis to show that the angular frequency ω cannot depend
on the amplitude x0.

Problem 3.21 Checking dimensions in the alleged solution
What are the dimensions of ωt? What are the dimensions of cosωt? Check the
dimensions of the proposed solution x = x0 cosωt, and the dimensions of the
proposed period 2π

√
m/k.

Problem 3.22 Verification
Show that x = x0 cosωt with ω =

√
k/m solves the spring differential equation

m
d2x

dt2
+ kx = 0. (3.29)

3.4.3 Meaning of the Reynolds number

As a further example of lumping—in particular, of the significant-change
approximation—let’s analyze the Navier–Stokes equations introduced in
Section 2.4,

∂v
∂t

+ (v·∇)v = −
1

ρ
∇p+ ν∇2v, (3.30)

and extract from them a physical meaning for the Reynolds number rv/ν.

To do so, we estimate the typical magnitude of the inertial term (v·∇)v
and of the viscous term ν∇2v.

What is the typical magnitude of the inertial term?

The inertial term (v·∇)v contains the spatial derivative ∇v. According to
the significant-change approximation (Section 3.3.3), the derivative ∇v is
roughly the ratio

significant change in flow velocity
distance over which flow velocity changes significantly . (3.31)
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The flow velocity (the velocity of the air) is nearly zero far from the
cone and is comparable to v near the cone (which is moving at speed v).
Therefore, v, or a reasonable fraction of v, constitutes a significant change
in flow velocity. This speed change happens over a distance comparable
to the size of the cone: Several cone lengths away, the air hardly knows
about the falling cone. Thus ∇v ∼ v/r. The inertial term (v·∇)v contains
a second factor of v, so (v·∇)v is roughly v2/r.

What is the typical magnitude of the viscous term?

The viscous term ν∇2v contains two spatial derivatives of v. Because
each spatial derivative contributes a factor of 1/r to the typical magnitude,
ν∇2v is roughly νv/r2. The ratio of the inertial term to the viscous term
is then roughly (v2/r)/(νv/r2). This ratio simplifies to rv/ν—the familiar,
dimensionless, Reynolds number.

Thus, the Reynolds number measures the importance of viscosity. When
Re
 1, the viscous term is small, and viscosity has a negligible effect. It
cannot prevent nearby pieces of fluid from acquiring significantly different
velocities, and the flow becomes turbulent. When Re � 1, the viscous
term is large, and viscosity is the dominant physical effect. The flow
oozes, as when pouring cold honey.

3.5 Predicting the period of a pendulum

Lumping not only turns integration into multiplication, it turns nonlin-
ear into linear differential equations. Our example is the analysis of the
period of a pendulum, for centuries the basis of Western timekeeping.

How does the period of a pendulum depend on its amplitude?

m

l

θ

The amplitude θ0 is the maximum angle of the swing; for a loss-
less pendulum released from rest, it is also the angle of release.
The effect of amplitude is contained in the solution to the pendu-
lum differential equation (see [24] for the equation’s derivation):

d2θ

dt2
+

g

l
sin θ = 0. (3.32)

The analysis will use all our tools: dimensions (Section 3.5.2), easy cases
(Section 3.5.1 and Section 3.5.3), and lumping (Section 3.5.4).
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Problem 3.23 Angles
Explain why angles are dimensionless.

Problem 3.24 Checking and using dimensions
Does the pendulum equation have correct dimensions? Use dimensional analy-
sis to show that the equation cannot contain the mass of the bob (except as a
common factor that divides out).

3.5.1 Small amplitudes: Applying extreme cases

θ1
sinθ

unit circle

θ

The pendulum equation is difficult because of its
nonlinear factor sin θ. Fortunately, the factor is easy
in the small-amplitude extreme case θ→ 0. In that
limit, the height of the triangle, which is sin θ, is
almost exactly the arclength θ. Therefore, for small
angles, sin θ ≈ θ.

Problem 3.25 Chord approximation
The sin θ ≈ θ approximation replaces the arc with a straight, vertical line. To
make a more accurate approximation, replace the arc with the chord (a straight
but nonvertical line). What is the resulting approximation for sin θ?

In the small-amplitude extreme, the pendulum equation becomes linear:

d2θ

dt2
+

g

l
θ = 0. (3.33)

Compare this equation to the spring–mass equation (Section 3.4)

d2x

dt2
+

k

m
x = 0. (3.34)

The equations correspond with x analogous to θ and k/m analogous
to g/l. The frequency of the spring–mass system is ω =

√
k/m, and

its period is T = 2π/ω = 2π
√
m/k. For the pendulum equation, the

corresponding period is

T = 2π

√
l

g
(for small amplitudes). (3.35)

(This analysis is a preview of the method of analogy, which is the subject
of Chapter 6.)
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Problem 3.26 Checking dimensions
Does the period 2π

√
l/g have correct dimensions?

Problem 3.27 Checking extreme cases
Does the period T = 2π

√
l/g make sense in the extreme cases g → ∞ and

g→ 0?

Problem 3.28 Possible coincidence
Is it a coincidence that g ≈ π2 m s−2? (For an extensive historical discussion
that involves the pendulum, see [1] and more broadly also [4, 27, 42].)

Problem 3.29 Conical pendulum for the constant

m

l

θ

The dimensionless factor of 2π can be derived using an in-
sight from Huygens [15, p. 79]: to analyze the motion of a
pendulum moving in a horizontal circle (a conical pendu-
lum). Projecting its two-dimensional motion onto a ver-
tical screen produces one-dimensional pendulum motion,
so the period of the two-dimensional motion is the same
as the period of one-dimensional pendulum motion! Use
that idea along with Newton’s laws of motion to explain
the 2π.

3.5.2 Arbitrary amplitudes: Applying dimensional analysis

The preceding results might change if the amplitude θ0 is no longer small.

As θ0 increases, does the period increase, remain constant, or decrease?

Any analysis becomes cleaner if expressed using dimensionless groups
(Section 2.4.1). This problem involves the period T , length l, gravitational
strength g, and amplitude θ0. Therefore, T can belong to the dimen-
sionless group T

/√
l/g. Because angles are dimensionless, θ0 is itself a

dimensionless group. The two groups T
/√

l/g and θ0 are independent
and fully describe the problem (Problem 3.30).

k

m

x0

An instructive contrast is the ideal spring–mass
system. The period T , spring constant k, and mass
m can form the dimensionless group T

/√
m/k; but

the amplitude x0, as the only quantity containing
a length, cannot be part of any dimensionless group (Problem 3.20) and
cannot therefore affect the period of the spring–mass system. In contrast,
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the pendulum’s amplitude θ0 is already a dimensionless group, so it can
affect the period of the system.

Problem 3.30 Choosing dimensionless groups
Check that period T , length l, gravitational strength g, and amplitude θ0 pro-
duce two independent dimensionless groups. In constructing useful groups for
analyzing the period, why should T appear in only one group? And why should
θ0 not appear in the same group as T?

Two dimensionless groups produce the general dimensionless form

one group = function of the other group, (3.36)

so
T√
l/g

= function of θ0. (3.37)

Because T
/√

l/g = 2π when θ0 = 0 (the small-amplitude limit), factor out
the 2π to simplify the subsequent equations, and define a dimensionless
period h as follows:

T√
l/g

= 2πh(θ0). (3.38)

The function h contains all information about how amplitude affects the
period of a pendulum. Using h, the original question about the period be-
comes the following: Is h an increasing, constant, or decreasing function
of amplitude? This question is answered in the following section.

3.5.3 Large amplitudes: Extreme cases again

For guessing the general behavior of h as a function of amplitude, useful
clues come from evaluating h at two amplitudes. One easy amplitude is
the extreme of zero amplitude, where h(0) = 1. A second easy amplitude
is the opposite extreme of large amplitudes.

How does the period behave at large amplitudes? As part of that question, what
is a large amplitude?

An interesting large amplitude is π/2, which means releasing the pendu-
lum from horizontal. However, at π/2 the exact h is the following awful
expression (Problem 3.31):
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h(π/2) =

√
2

π

∫π/2
0

dθ√
cos θ

. (3.39)

Is this integral less than, equal to, or more than 1? Who knows? The inte-
gral is likely to have no closed form and to require numerical evaluation
(Problem 3.32).

Problem 3.31 General expression for h

Use conservation of energy to show that the period is

T(θ0) = 2
√
2

√
l

g

∫θ0

0

dθ√
cos θ− cos θ0

. (3.40)

Confirm that the equivalent dimensionless statement is

h(θ0) =

√
2

π

∫θ0

0

dθ√
cos θ− cos θ0

. (3.41)

For horizontal release, θ0 = π/2, and

h(π/2) =

√
2

π

∫π/2
0

dθ√
cos θ

. (3.42)

Problem 3.32 Numerical evaluation for horizontal release
Why do the lumping recipes (Section 3.2) fail for the integrals in Problem 3.31?
Compute h(π/2) using numerical integration.

Because θ0 = π/2 is not a helpful extreme, be even more extreme. Try
θ0 = π, which means releasing the pendulum bob from vertical. If the
bob is connected to the pivot point by a string, however, a vertical release
would mean that the bob falls straight down instead of oscillating. This
novel behavior is neither included in nor described by the pendulum
differential equation.

θ0

h(θ0)

π

11

Fortunately, a thought experiment is cheap to im-
prove: Replace the string with a massless steel
rod. Balanced perfectly at θ0 = π, the pendulum
bob hangs upside down forever, so T(π) =∞ and
h(π) = ∞. Thus, h(π) > 1 and h(0) = 1. From
these data, the most likely conjecture is that h in-
creases monotonically with amplitude. Although
h could first decrease and then increase, such twists and turns would
be surprising behavior from such a clean differential equation. (For the
behavior of h near θ0 = π, see Problem 3.34).
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Problem 3.33 Small but nonzero amplitude

θ0

h

1 A
B

As the amplitude approaches π, the dimensionless period h

diverges to infinity; at zero amplitude, h = 1. But what about
the derivative of h? At zero amplitude (θ0 = 0), does h(θ0)
have zero slope (curve A) or positive slope (curve B)?

Problem 3.34 Nearly vertical release

β h(π− β)

10−1 2.791297

10−2 4.255581

10−3 5.721428

10−4 7.187298

Imagine releasing the pendulum from almost vertical:
an initial angle π − β with β tiny. As a function of β,
roughly how long does the pendulum take to rotate by
a significant angle—say, by 1 rad? Use that information
to predict how h(θ0) behaves when θ0 ≈ π. Check and
refine your conjectures using the tabulated values. Then
predict h(π− 10−5).

3.5.4 Moderate amplitudes: Applying lumping

The conjecture that h increases monotonically was derived using the ex-
tremes of zero and vertical amplitude, so it should apply at intermediate
amplitudes. Before taking that statement on faith, recall a proverb from
arms-control negotiations: “Trust, but verify.”

At moderate (small but nonzero) amplitudes, does the period, or its dimensionless
cousin h, increase with amplitude?

In the zero-amplitude extreme, sin θ is close to θ. That approximation
turned the nonlinear pendulum equation

d2θ

dt2
+

g

l
sin θ = 0 (3.43)

into the linear, ideal-spring equation—in which the period is independent
of amplitude.
At nonzero amplitude, however, θ and sin θ differ and their difference
affects the period. To account for the difference and predict the period,
split sin θ into the tractable factor θ and an adjustment factor f(θ). The
resulting equation is

d2θ

dt2
+

g

l
θ
sin θ

θ︸ ︷︷ ︸
f(θ)

= 0. (3.44)
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0

1

0 θ0

f(θ)The nonconstant f(θ) encapsulates the nonlinearity of
the pendulum equation. When θ is tiny, f(θ) ≈ 1: The
pendulum behaves like a linear, ideal-spring system.
But when θ is large, f(θ) falls significantly below 1,
making the ideal-spring approximation significantly
inaccurate. As is often the case, a changing process is
difficult to analyze—for example, see the awful integrals in Problem 3.31.
As a countermeasure, make a lumping approximation by replacing the
changing f(θ) with a constant.

0

1

0 θ0

f(0)The simplest constant is f(0). Then the pendu-
lum differential equation becomes

d2θ

dt2
+

g

l
θ = 0. (3.45)

This equation is, again, the ideal-spring equation.
In this approximation, period does not depend on amplitude, so h = 1 for
all amplitudes. For determining how the period of an unapproximated
pendulum depends on amplitude, the f(θ) → f(0) lumping approxima-
tion discards too much information.

0

1

0 θ0

f(θ0)

Therefore, replace f(θ) with the other extreme
f(θ0). Then the pendulum equation becomes

d2θ

dt2
+

g

l
θf(θ0) = 0. (3.46)

Is this equation linear? What physical system does
it describe?

Because f(θ0) is a constant, this equation is linear! It describes a zero-
amplitude pendulum on a planet with gravity geff that is slightly weaker
than earth gravity—as shown by the following slight regrouping:

d2θ

dt2
+

geff︷ ︸︸ ︷
gf(θ0)

l
θ = 0. (3.47)

Because the zero-amplitude pendulum has period T = 2π
√
l/g, the zero-

amplitude, low-gravity pendulum has period

T(θ0) ≈ 2π

√
l

geff
= 2π

√
l

gf(θ0)
. (3.48)
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θ0π

1
h

f−1/2Using the dimensionless period h avoids writing
the factors of 2π, l, and g, and it yields the simple
prediction

h(θ0) ≈ f(θ0)
−1/2 =

(
sin θ0

θ0

)−1/2

. (3.49)

At moderate amplitudes the approximation closely
follows the exact dimensionless period (dark curve). As a bonus, it also
predicts h(π) =∞, so it agrees with the thought experiment of releasing
the pendulum from upright (Section 3.5.3).

How much larger than the period at zero amplitude is the period at 10◦ amplitude?

A 10◦ amplitude is roughly 0.17 rad, a moderate angle, so the approximate
prediction for h can itself accurately be approximated using a Taylor series.
The Taylor series for sin θ begins θ− θ3/6, so

f(θ0) =
sin θ0

θ0
≈ 1−

θ20
6
. (3.50)

Then h(θ0), which is roughly f(θ0)
−1/2, becomes

h(θ0) ≈
(
1−

θ20
6

)−1/2

. (3.51)

Another Taylor series yields (1+ x)−1/2 ≈ 1− x/2 (for small x). Therefore,

h(θ0) ≈ 1+
θ20
12

. (3.52)

Restoring the dimensioned quantities gives the period itself.

T ≈ 2π

√
l

g

(
1+

θ20
12

)
. (3.53)

Compared to the period at zero amplitude, a 10◦ amplitude produces a
fractional increase of roughly θ20/12 ≈ 0.0025 or 0.25%. Even at moderate
amplitudes, the period is nearly independent of amplitude!

Problem 3.35 Slope revisited
Use the preceding result for h(θ0) to check your conclusion in Problem 3.33
about the slope of h(θ0) at θ0 = 0.
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Does our lumping approximation underestimate or overestimate the period?

The lumping approximation simplified the pendulum differential equa-
tion by replacing f(θ) with f(θ0). Equivalently, it assumed that the mass
always remained at the endpoints of the motion where |θ| = θ0. Instead,
the pendulum spends much of its time at intermediate positions where
|θ| < θ0 and f(θ) > f(θ0). Therefore, the average f is greater than f(θ0).
Because h is inversely related to f (h = f−1/2), the f(θ) → f(θ0) lumping
approximation overestimates h and the period.
The f(θ) → f(0) lumping approximation, which predicts T = 2π

√
l/g,

underestimates the period. Therefore, the true coefficient of the θ20 term
in the period approximation

T ≈ 2π

√
l

g

(
1+

θ20
12

)
(3.54)

lies between 0 and 1/12. A natural guess is that the coefficient lies halfway
between these extremes—namely, 1/24. However, the pendulum spends
more time toward the extremes (where f(θ) = f(θ0)) than it spends near
the equilibrium position (where f(θ) = f(0)). Therefore, the true coef-
ficient is probably closer to 1/12—the prediction of the f(θ) → f(θ0)

approximation—than it is to 0. An improved guess might be two-thirds
of the way from 0 to 1/12, namely 1/18.
In comparison, a full successive-approximation solution of the pendulum
differential equation gives the following period [13, 33]:

T = 2π

√
l

g

(
1+

1

16
θ20 +

11

3072
θ40 + · · ·

)
. (3.55)

Our educated guess of 1/18 is very close to the true coefficient of 1/16!

3.6 Summary and further problems

Lumping turns calculus on its head. Whereas calculus analyzes a chang-
ing process by dividing it into ever finer intervals, lumping simplifies a
changing process by combining it into one unchanging process. It turns
curves into straight lines, difficult integrals into multiplication, and mildly
nonlinear differential equations into linear differential equations.

. . . the crooked shall be made straight, and the rough places plain. (Isaiah 40:4)
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Problem 3.36 FWHM for another decaying function
Use the FWHM heuristic to estimate∫∞

−∞
dx

1+ x4
. (3.56)

Then compare the estimate with the exact value of π/
√
2. For an enjoyable

additional problem, derive the exact value.

Problem 3.37 Hypothetical pendulum equation
Suppose the pendulum equation had been

d2θ

dθ2
+

g

l
tanθ = 0. (3.57)

How would the period T depend on amplitude θ0? In particular, as θ0 increases,
would T decrease, remain constant, or increase? What is the slope dT/dθ0 at
zero amplitude? Compare your results with the results of Problem 3.33.
For small but nonzero θ0, find an approximate expression for the dimensionless
period h(θ0) and use it to check your previous conclusions.

Problem 3.38 Gaussian 1-sigma tail
The Gaussian probability density function with zero mean and unit variance is

p(x) =
e−x2/2

√
2π

. (3.58)

The area of its tail is an important quantity in statistics, but it has no closed form.
In this problem you estimate the area of the 1-sigma tail∫∞

1

e−x2/2

√
2π

dx. (3.59)

a. Sketch the above Gaussian and shade the 1-sigma tail.
b. Use the 1/e lumping heuristic (Section 3.2.1) to estimate the area.
c. Use the FWHM heuristic to estimate the area.
d. Compare the two lumping estimates with the result of numerical integration:∫∞

1

e−x2/2

√
2π

dx =
1− erf(1/

√
2)

2
≈ 0.159, (3.60)

where erf(z) is the error function.

Problem 3.39 Distant Gaussian tails
For the canonical probability Gaussian, estimate the area of its n-sigma tail (for
large n). In other words, estimate∫∞

n

e−x2/2

√
2π

dx. (3.61)
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Have you ever worked through a proof, understood and confirmed each
step, yet still not believed the theorem? You realize that the theorem is
true, but not why it is true.
To see the same contrast in a familiar example, imagine learning that your
child has a fever and hearing the temperature in Fahrenheit or Celsius
degrees, whichever is less familiar. In my everyday experience, tempera-
tures are mostly in Fahrenheit. When I hear about a temperature of 40◦C,
I therefore react in two stages:

1. I convert 40◦ C to Fahrenheit: 40× 1.8+ 32 = 104.
2. I react: “Wow, 104◦ F. That’s dangerous! Get thee to a doctor!”

The Celsius temperature, although symbolically equivalent to the Fahren-
heit temperature, elicits no reaction. My danger sense activates only after
the temperature conversion connects the temperature to my experience.
A symbolic description, whether a proof or an unfamiliar temperature, is
unconvincing compared to an argument that speaks to our perceptual sys-
tem. The reason lies in how our brains acquired the capacity for symbolic
reasoning. (See Evolving Brains [2] for an illustrated, scholarly history of
the brain.) Symbolic, sequential reasoning requires language, which has
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evolved for only 105 yr. Although 105 yr spans many human lifetimes, it
is an evolutionary eyeblink. In particular, it is short compared to the time
span over which our perceptual hardware has evolved: For several hun-
dred million years, organisms have refined their capacities for hearing,
smelling, tasting, touching, and seeing.
Evolution has worked 1000 times longer on our perceptual abilities than
on our symbolic-reasoning abilities. Compared to our perceptual hard-
ware, our symbolic, sequential hardware is an ill-developed latecomer.
Not surprisingly, our perceptual abilities far surpass our symbolic abil-
ities. Even an apparently high-level symbolic activity such as playing
grandmaster chess uses mostly perceptual hardware [16]. Seeing an idea
conveys to us a depth of understanding that a symbolic description of it
cannot easily match.

Problem 4.1 Computers versus people
At tasks like expanding (x+ 2y)50, computers are much faster than people. At
tasks like recognizing faces or smells, even young children are much faster than
current computers. How do you explain these contrasts?

Problem 4.2 Linguistic evidence for the importance of perception
In your favorite language(s), think of the many sensory synonyms for under-
standing (for example, grasping).

4.1 Adding odd numbers

To illustrate the value of pictures, let’s find the sum of the first n odd
numbers (also the subject of Problem 2.25):

Sn = 1+ 3+ 5+ · · ·+ (2n− 1)︸ ︷︷ ︸
n terms

. (4.1)

Easy cases such as n = 1, 2, or 3 lead to the conjecture that Sn = n2.
But how can the conjecture be proved? The standard symbolic method is
proof by induction:

1. Verify that Sn = n2 for the base case n = 1. In that case, S1 is 1, as is
n2, so the base case is verified.

2. Make the induction hypothesis: Assume that Sm = m2 for m less than
or equal to a maximum value n. For this proof, the following, weaker
induction hypothesis is sufficient:
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n∑
1

(2k− 1) = n2. (4.2)

In other words, we assume the theorem only in the case that m = n.

3. Perform the induction step: Use the induction hypothesis to show that
Sn+1 = (n+ 1)2. The sum Sn+1 splits into two pieces:

Sn+1 =

n+1∑
1

(2k− 1) = (2n+ 1) +

n∑
1

(2k− 1). (4.3)

Thanks to the induction hypothesis, the sum on the right is n2. Thus

Sn+1 = (2n+ 1) + n2, (4.4)

which is (n+ 1)2; and the theorem is proved.

Although these steps prove the theorem, why the sum Sn ends up as n2

still feels elusive.

That missing understanding—the kind of gestalt insight described by
Wertheimer [48]—requires a pictorial proof. Start by drawing each odd
number as an L-shaped puzzle piece:

1

3

5

(4.5)

How do these pieces fit together?

Then compute Sn by fitting together the puzzle pieces as follows:

S2 = 1 +
3

= 1

3

S3 = 1 +
3

+

5

= 1

3

5

(4.6)

Each successive odd number—each piece—extends the square by 1 unit
in height and width, so the n terms build an n × n square. [Or is it an
(n− 1)× (n− 1) square?] Therefore, their sum is n2. After grasping this
pictorial proof, you cannot forget why adding up the first n odd numbers
produces n2.
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Problem 4.3 Triangular numbers
Draw a picture or pictures to show that

1+ 2+ 3+ · · ·+ n+ · · ·+ 3+ 2+ 1 = n2. (4.7)

Then show that

1+ 2+ 3+ · · ·+ n =
n(n+ 1)

2
. (4.8)

Problem 4.4 Three dimensions
Draw a picture to show that

n∑
0

(3k2 + 3k+ 1) = (n+ 1)3. (4.9)

Give pictorial explanations for the 1 in the summand 3k2+ 3k+ 1; for the 3 and
the k2 in 3k2; and for the 3 and the k in 3k.

4.2 Arithmetic and geometric means

The next pictorial proof starts with two nonnegative numbers—for exam-
ple, 3 and 4—and compares the following two averages:

arithmetic mean ≡ 3+ 4

2
= 3.5; (4.10)

geometric mean ≡ √3× 4 ≈ 3.464. (4.11)

Try another pair of numbers—for example, 1 and 2. The arithmetic mean
is 1.5; the geometric mean is

√
2 ≈ 1.414. For both pairs, the geometric

mean is smaller than the arithmetic mean. This pattern is general; it is
the famous arithmetic-mean–geometric-mean (AM–GM) inequality [18]:

a+ b

2︸ ︷︷ ︸
AM

�
√
ab︸︷︷︸

GM

. (4.12)

(The inequality requires that a, b � 0.)

Problem 4.5 More numerical examples
Test the AM–GM inequality using varied numerical examples. What do you
notice when a and b are close to each other? Can you formalize the pattern?
(See also Problem 4.16.)
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4.2.1 Symbolic proof

The AM–GM inequality has a pictorial and a symbolic proof. The sym-
bolic proof begins with (a−b)2—a surprising choice because the inequal-
ity contains a + b rather than a − b. The second odd choice is to form
(a − b)2. It is nonnegative, so a2 − 2ab + b2 � 0. Now magically decide
to add 4ab to both sides. The result is

a2 + 2ab+ b2︸ ︷︷ ︸
(a+b)2

� 4ab. (4.13)

The left side is (a+ b)2, so a+ b � 2
√
ab and

a+ b

2
�
√
ab. (4.14)

Although each step is simple, the whole chain seems like magic and leaves
the why mysterious. If the algebra had ended with (a + b)/4 �

√
ab, it

would not look obviously wrong. In contrast, a convincing proof would
leave us feeling that the inequality cannot help but be true.

4.2.2 Pictorial proof

This satisfaction is provided by a pictorial proof.

What is pictorial, or geometric, about the geometric mean?

x

a b

A geometric picture for the geometric mean starts
with a right triangle. Lay it with its hypotenuse
horizontal; then cut it with the altitude x into
the light and dark subtriangles. The hypotenuse
splits into two lengths a and b, and the altitude
x is their geometric mean

√
ab.

Why is the altitude x equal to
√
ab?

b

x

To show that x =
√
ab, compare the small, dark triangle

to the large, light triangle by rotating the small triangle
and laying it on the large triangle. The two triangles are
similar! Therefore, their aspect ratios (the ratio of the
short to the long side) are identical. In symbols, x/a =

b/x: The altitude x is therefore the geometric mean
√
ab.
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The uncut right triangle represents the geometric-mean portion of the
AM–GM inequality. The arithmetic mean (a+ b)/2 also has a picture, as
one-half of the hypotenuse. Thus, the inequality claims that

hypotenuse
2

� altitude. (4.15)

Alas, this claim is not pictorially obvious.

Can you find an alternative geometric interpretation of the arithmetic mean that
makes the AM–GM inequality pictorially obvious?

√
aba+ b

2

a b

The arithmetic mean is also the radius
of a circle with diameter a + b. There-
fore, circumscribe a semicircle around
the triangle, matching the circle’s diam-
eter with the hypotenuse a + b (Prob-
lem 4.7). The altitude cannot exceed the
radius; therefore,

a+ b

2
�
√
ab. (4.16)

Furthermore, the two sides are equal only when the altitude of the triangle
is also a radius of the semicircle—namely when a = b. The picture
therefore contains the inequality and its equality condition in one easy-
to-grasp object. (An alternative pictorial proof of the AM–GM inequality
is developed in Problem 4.33.)

Problem 4.6 Circumscribing a circle around a triangle
Here are a few examples showing a circle circumscribed around a triangle.

Draw a picture to show that the circle is uniquely determined by the triangle.

Problem 4.7 Finding the right semicircle
A triangle uniquely determines its circumscribing circle (Problem 4.6). However,
the circle’s diameter might not align with a side of the triangle. Can a semicir-
cle always be circumscribed around a right triangle while aligning the circle’s
diameter along the hypotenuse?
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Problem 4.8 Geometric mean of three numbers
For three nonnegative numbers, the AM–GM inequality is

a+ b+ c

3
� (abc)1/3. (4.17)

Why is this inequality, in contrast to its two-number cousin, unlikely to have a
geometric proof? (If you find a proof, let me know.)

4.2.3 Applications

Arithmetic and geometric means have wide mathematical application.
The first application is a problem more often solved with derivatives:
Fold a fixed length of fence into a rectangle enclosing the largest garden.

What shape of rectangle maximizes the area?

a

b

garden

The problem involves two quantities: a perimeter that
is fixed and an area to maximize. If the perimeter is re-
lated to the arithmetic mean and the area to the geometric
mean, then the AM–GM inequality might help maximize
the area. The perimeter P = 2(a + b) is four times the
arithmetic mean, and the area A = ab is the square of the
geometric mean. Therefore, from the AM–GM inequality,

P

4︸︷︷︸
AM

�
√
A︸︷︷︸

GM

(4.18)

with equality when a = b. The left side is fixed by the amount of fence.
Thus the right side, which varies depending on a and b, has a maximum
of P/4 when a = b. The maximal-area rectangle is a square.

Problem 4.9 Direct pictorial proof
The AM–GM reasoning for the maximal rectangular garden is indirect pictorial
reasoning. It is symbolic reasoning built upon the pictorial proof for the AM–
GM inequality. Can you draw a picture to show directly that the square is the
optimal shape?

Problem 4.10 Three-part product
Find the maximum value of f(x) = x2(1− 2x) for x � 0, without using calculus.
Sketch f(x) to confirm your answer.
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Problem 4.11 Unrestricted maximal area
If the garden need not be rectangular, what is the maximal-area shape?

Problem 4.12 Volume maximization

base

flap x

x

Build an open-topped box as follows: Start with a unit square,
cut out four identical corners, and fold in the flaps. The box
has volume V = x(1 − 2x)2, where x is the side length of a
corner cutout. What choice of x maximizes the volume of the
box?
Here is a plausible analysis modeled on the analysis of the
rectangular garden. Set a = x, b = 1 − 2x, and c = 1 − 2x. Then abc is the
volume V , and V1/3 = 3

√
abc is the geometric mean (Problem 4.8). Because the

geometric mean never exceeds the arithmetic mean and because the two means
are equal when a = b = c, the maximum volume is attained when x = 1 − 2x.
Therefore, choosing x = 1/3 should maximize the volume of the box.
Now show that this choice is wrong by graphing V(x) or setting dV/dx = 0;
explain what is wrong with the preceding reasoning; and make a correct version.

Problem 4.13 Trigonometric minimum
Find the minimum value of

9x2 sin2 x+ 4

x sin x
(4.19)

in the region x ∈ (0, π).

Problem 4.14 Trigonometric maximum
In the region t ∈ [0, π/2], maximize sin 2t or, equivalently, 2 sin t cos t.

The second application of arithmetic and geometric means is a modern,
amazingly rapid method for computing π [5, 6]. Ancient methods for
computing π included calculating the perimeter of many-sided regular
polygons and provided a few decimal places of accuracy.
Recent computations have used Leibniz’s arctangent series

arctanx = x−
x3

3
+

x5

5
−

x7

7
+ · · · . (4.20)

Imagine that you want to compute π to 109 digits, perhaps to test the
hardware of a new supercomputer or to study whether the digits of π are
random (a theme in Carl Sagan’s novel Contact [40]). Setting x = 1 in the
Leibniz series produces π/4, but the series converges extremely slowly.
Obtaining 109 digits requires roughly 1010

9 terms—far more terms than
atoms in the universe.
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Fortunately, a surprising trigonometric identity due to John Machin (1686–
1751)

arctan 1 = 4 arctan
1

5
− arctan

1

239
(4.21)

accelerates the convergence by reducing x:

π

4
= 4×

(
1−

1

3× 53
+ · · ·
)

︸ ︷︷ ︸
arctan (1/5)

−

(
1−

1

3× 2393
+ · · ·
)

︸ ︷︷ ︸
arctan (1/239)

. (4.22)

Even with the speedup, 109-digit accuracy requires calculating roughly
109 terms.

In contrast, the modern Brent–Salamin algorithm [3, 41], which relies on
arithmetic and geometric means, converges to π extremely rapidly. The
algorithm is closely related to amazingly accurate methods for calculating
the perimeter of an ellipse (Problem 4.15) and also for calculating mutual
inductance [23]. The algorithm generates several sequences by starting
with a0 = 1 and g0 = 1/

√
2; it then computes successive arithmetic means

an, geometric means gn, and their squared differences dn.

an+1 =
an + gn

2
, gn+1 =

√
angn, dn = a2

n − g2
n. (4.23)

The a and g sequences rapidly converge to a number M(a0, g0) called
the arithmetic–geometric mean of a0 and g0. Then M(a0, g0) and the
difference sequence d determine π.

π =
4M(a0, g0)

2

1−
∑∞

j=1 2
j+1dj

. (4.24)

The d sequence approaches zero quadratically; in other words, dn+1 ∼ d2
n

(Problem 4.16). Therefore, each iteration in this computation of π doubles
the digits of accuracy. A billion-digit calculation of π requires only about
30 iterations—far fewer than the 1010

9 terms using the arctangent series
with x = 1 or even than the 109 terms using Machin’s speedup.

Problem 4.15 Perimeter of an ellipse
To compute the perimeter of an ellipse with semimajor axis a0 and semiminor
axis g0, compute the a, g, and d sequences and the common limit M(a0, g0) of
the a and g sequences, as for the computation of π. Then the perimeter P can
be computed with the following formula:
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P =
A

M(a0, g0)

⎛
⎝a20 − B

∞∑
j=0

2jdj

⎞
⎠ , (4.25)

where A and B are constants for you to determine. Use the method of easy cases
(Chapter 2) to determine their values. (See [3] to check your values and for a
proof of the completed formula.)

Problem 4.16 Quadratic convergence
Start with a0 = 1 and g0 = 1/

√
2 (or any other positive pair) and follow several

iterations of the AM–GM sequence

an+1 =
an + gn

2
and gn+1 =

√
angn. (4.26)

Then generate dn = a2n − g2n and log10 dn to check that dn+1 ∼ d2n (quadratic
convergence).

Problem 4.17 Rapidity of convergence
Pick a positive x0; then generate a sequence by the iteration

xn+1 =
1

2

(
xn +

2

xn

)
(n � 0). (4.27)

To what and how rapidly does the sequence converge? What if x0 < 0?

4.3 Approximating the logarithm

θ1
sinθ

unit circle

θ

A function is often approximated by its Taylor series

f(x) = f(0) + x
df

dx

∣∣∣
x=0

+
x2

2

d2f

dx2

∣∣∣
x=0

+ · · · , (4.28)

which looks like an unintuitive sequence of symbols.
Fortunately, pictures often explain the first and most
important terms in a function approximation. For example, the one-term
approximation sin θ ≈ θ, which replaces the altitude of the triangle by
the arc of the circle, turns the nonlinear pendulum differential equation
into a tractable, linear equation (Section 3.5).

Another Taylor-series illustration of the value of pictures come from the
series for the logarithm function:

ln(1+ x) = x−
x2

2
+

x3

3
− · · · . (4.29)
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Its first term, x, will lead to the wonderful approximation (1 + x)n ≈ enx

for small x and arbitrary n (Section 5.3.4). Its second term, −x2/2, helps
evaluate the accuracy of that approximation. These first two terms are
the most useful terms—and they have pictorial explanations.

1
1+t

ln(1+ x)

0 x

1

t

The starting picture is the integral representation

ln(1+ x) =

∫ x
0

dt

1+ t
. (4.30)

What is the simplest approximation for the shaded area?

1
1+t

x

0 x

1

t

As a first approximation, the shaded area is roughly
the circumscribed rectangle—an example of lump-
ing. The rectangle has area x:

area = height︸ ︷︷ ︸
1

×width︸ ︷︷ ︸
x

= x. (4.31)

This area reproduces the first term in the Taylor series. Because it uses a
circumscribed rectangle, it slightly overestimates ln(1+ x).

1
1+t

0 x

1

t

The area can also be approximated by drawing an in-
scribed rectangle. Its width is again x, but its height
is not 1 but rather 1/(1+x), which is approximately
1 − x (Problem 4.18). Thus the inscribed rectangle
has the approximate area x(1 − x) = x − x2. This
area slightly underestimates ln(1+ x).

Problem 4.18 Picture for approximating the reciprocal function
Confirm the approximation

1

1+ x
≈ 1− x (for small x) (4.32)

by trying x = 0.1 or x = 0.2. Then draw a picture to illustrate the equivalent
approximation (1− x)(1+ x) ≈ 1.

We now have two approximations to ln(1 + x). The first and slightly
simpler approximation came from drawing the circumscribed rectangle.
The second approximation came from drawing the inscribed rectangle.
Both dance around the exact value.

How can the inscribed- and circumscribed-rectangle approximations be combined
to make an improved approximation?
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1
1+t

0 x

1

t

One approximation overestimates the area, and the
other underestimates the area; their average ought
to improve on either approximation. The average is
a trapezoid with area

x+ (x− x2)

2
= x−

x2

2
. (4.33)

This area reproduces the first two terms of the full Taylor series

ln(1+ x) = x−
x2

2
+

x3

3
− · · · . (4.34)

Problem 4.19 Cubic term
Estimate the cubic term in the Taylor series by estimating the difference between
the trapezoid and the true area.

For these logarithm approximations, the hardest problem is ln 2.

ln(1+ 1) ≈
{
1 (one term)

1−
1

2
(two terms).

(4.35)

Both approximations differ significantly from the true value (roughly
0.693). Even moderate accuracy for ln 2 requires many terms of the Taylor
series, far beyond what pictures explain (Problem 4.20). The problem is
that x in ln(1 + x) is 1, so the xn factor in each term of the Taylor series
does not shrink the high-n terms.

The same problem happens when computing π using Leibniz’s arctangent
series (Section 4.2.3)

arctanx = x−
x3

3
+

x5

5
−

x7

7
+ · · · . (4.36)

By using x = 1, the direct approximation of π/4 requires many terms
to attain even moderate accuracy. Fortunately, the trigonometric identity
arctan 1 = 4 arctan 1/5 − arctan 1/239 lowers the largest x to 1/5 and
thereby speeds the convergence.

Is there an analogous that helps estimate ln 2?

Because 2 is also (4/3)/(2/3), an analogous rewriting of ln 2 is

ln 2 = ln
4

3
− ln

2

3
. (4.37)
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Each fraction has the form 1 + x with x = ±1/3. Because x is small, one
term of the logarithm series might provide reasonable accuracy. Let’s
therefore use ln(1+ x) ≈ x to approximate the two logarithms:

ln 2 ≈ 1

3
−

(
−
1

3

)
=

2

3
. (4.38)

This estimate is accurate to within 5%!

The rewriting trick has helped to compute π (by rewriting the arctanx

series) and to estimate ln(1 + x) (by rewriting x itself). This idea there-
fore becomes a method—a trick that I use twice (this definition is often
attributed to Polya).

Problem 4.20 How many terms?
The full Taylor series for the logarithm is

ln(1+ x) =

∞∑
1

(−1)n+1 x
n

n
. (4.39)

If you set x = 1 in this series, how many terms are required to estimate ln 2 to
within 5%?

Problem 4.21 Second rewriting
Repeat the rewriting method by rewriting 4/3 and 2/3; then estimate ln 2 using
only one term of the logarithm series. How accurate is the revised estimate?

Problem 4.22 Two terms of the Taylor series
After rewriting ln 2 as ln(4/3) − ln(2/3), use the two-term approximation that
ln(1+x) ≈ x−x2/2 to estimate ln 2. Compare the approximation to the one-term
estimate, namely 2/3. (Problem 4.24 investigates a pictorial explanation.)

Problem 4.23 Rational-function approximation for the logarithm
The replacement ln 2 = ln(4/3) − ln(2/3) has the general form

ln(1+ x) = ln
1+ y

1− y
, (4.40)

where y = x/(2+ x).

Use the expression for y and the one-term series ln(1+x) ≈ x to express ln(1+x)
as a rational function of x (as a ratio of polynomials in x). What are the first few
terms of its Taylor series?

Compare those terms to the first few terms of the ln(1 + x) Taylor series, and
thereby explain why the rational-function approximation is more accurate than
even the two-term series ln(1+ x) ≈ x− x2/2.
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Problem 4.24 Pictorial interpretation of the rewriting

1
1+t

ln2

−1/3 1/3

1

t

a. Use the integral representation of ln(1+ x) to explain
why the shaded area is ln 2.

b. Outline the region that represents

ln
4

3
− ln

2

3
(4.41)

when using the circumscribed-rectangle approximation
for each logarithm.

c. Outline the same region when using the trapezoid ap-
proximation ln(1+x) = x−x2/2. Show pictorially that
this region, although a different shape, has the same area as the region that
you drew in item b.

4.4 Bisecting a triangle

Pictorial solutions are especially likely for a geometric problem:

What is the shortest path that bisects an equilateral triangle into two regions of
equal area?

The possible bisecting paths form an uncountably infinite set. To manage
the complexity, try easy cases (Chapter 2)—draw a few equilateral trian-
gles and bisect them with easy paths. Patterns, ideas, or even a solution
might emerge.

What are a few easy paths?

l =
√
3/2

1

l

The simplest bisecting path is a vertical segment that splits
the triangle into two right triangles each with base 1/2. This
path is the triangle’s altitude, and it has length

l =
√
12 − (1/2)2 =

√
3

2
≈ 0.866. (4.42)

l = 1/
√
2

An alternative straight path splits the triangle into a trapezoid
and a small triangle.

What is the shape of the smaller triangle, and how long is the path?

The triangle is similar to the original triangle, so it too is equilateral.
Furthermore, it has one-half of the area of the original triangle, so its three
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sides, one of which is the bisecting path, are a factor of
√
2 smaller than the

sides of the original triangle. Thus this path has length 1/
√
2 ≈ 0.707—a

substantial improvement on the vertical path with length
√
3/2.

Problem 4.25 All one-segment paths
An equilateral triangle has infinitely many one-segment bisecting paths.
A few of them are shown in the figure. Which one-segment path is
the shortest?

l = 1

Now let’s investigate easy two-segment paths. One possible
path encloses a diamond and excludes two small triangles.
The two small triangles occupy one-half of the entire area.
Each small triangle therefore occupies one-fourth of the entire
area and has side length 1/2. Because the bisecting path con-
tains two of these sides, it has length 1. This path is, unfortunately, longer
than our two one-segment candidates, whose lengths are 1/

√
2 and

√
3/2.

Therefore, a reasonable conjecture is that the shortest path has the fewest
segments. This conjecture deserves to be tested (Problem 4.26).

Problem 4.26 All two-segment paths
Draw a figure showing the variety of two-segment paths. Find the shortest path,
showing that it has length

l = 2× 31/4 × sin 15◦ ≈ 0.681. (4.43)

Problem 4.27 Bisecting with closed paths
The bisecting path need not begin or end at an edge of the triangle. Two examples
are illustrated here:

Do you expect closed bisecting paths to be longer or shorter than the shortest
one-segment path? Give a geometric reason for your conjecture, and check the
conjecture by finding the lengths of the two illustrative closed paths.

Does using fewer segments produce shorter paths?

The shortest one-segment path has an approximate length of 0.707; but the
shortest two-segment path has an approximate length of 0.681. The length
decrease suggests trying extreme paths: paths with an infinite number of
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segments. In other words, try curved paths. The easiest curved path is
probably a circle or a piece of a circle.

What is a likely candidate for the shortest circle or piece of a circle that bisects
the triangle?

Whether the path is a circle or piece of a circle, it needs a center.
However, putting the center inside the triangle and using a full
circle produces a long bisecting path (Problem 4.27). The only
other plausible center is a vertex of the triangle, so imagine a
bisecting arc centered on one vertex.

How long is this arc?

The arc subtends one-sixth (60◦) of the full circle, so its length is l = πr/3,
where r is radius of the full circle. To find the radius, use the requirement
that the arc must bisect the triangle. Therefore, the arc encloses one-half
of the triangle’s area. The condition on r is that πr2 = 3

√
3/4:

1

6
× area of the full circle︸ ︷︷ ︸

πr2

=
1

2
× area of the triangle︸ ︷︷ ︸√

3/4

. (4.44)

The radius is therefore (3
√
3/4π)1/2; the length of the arc is πr/3, which

is approximately 0.673. This curved path is shorter than the shortest
two-segment path. It might be the shortest possible path.
To test this conjecture, we use symmetry. Because an equilateral triangle
is one-sixth of a hexagon, build a hexagon by replicating the bisected
equilateral triangle. Here is the hexagon built from the triangle bisected
by a horizontal line:

The six bisecting paths form an internal hexagon whose area is one-half
of the area of the large hexagon.

What happens when replicating the triangle bisected by the circular arc?
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When that triangle is replicated, its six copies make a circle
with area equal to one-half of the area of the hexagon.
For a fixed area, a circle has the shortest perimeter (the
isoperimetric theorem [30] and Problem 4.11); therefore,
one-sixth of the circle is the shortest bisecting path.

Problem 4.28 Replicating the vertical bisection
The triangle bisected by a vertical line, if replicated and only rotated, produces a
fragmented enclosed region rather than a convex polygon. How can the triangle
be replicated so that the six bisecting paths form a regular polygon?

Problem 4.29 Bisecting the cube
Of all surfaces that bisect a cube into two equal volumes, which surface has the
smallest area?

4.5 Summing series

For the final example of what pictures can explain, return to the factorial
function. Our first approximation to n! began with its integral represen-
tation and then used lumping (Section 3.2.3).

ln2

ln3

ln4
ln5

lnk

1 2 3 4 5
k

Lumping, by replacing a curve with a
rectangle whose area is easily computed,
is already a pictorial analysis. A second
picture for n! begins with the summa-
tion representation

lnn! =

n∑
1

ln k. (4.45)

This sum equals the combined area of the circumscribing rectangles.

Problem 4.30 Drawing the smooth curve
Setting the height of the rectangles requires drawing the ln k curve—which
could intersect the top edge of each rectangle anywhere along the edge. In the
preceding figure and the analysis of this section, the curve intersects at the right
endpoint of the edge. After reading the section, redo the analysis for two other
cases:

a. The curve intersects at the left endpoint of the edge.

b. The curve intersects at the midpoint of the edge.
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∫n
1

lnkdk

lnk

1 · · · n
k

That combined area is approximately
the area under the ln k curve, so

lnn! ≈
∫n
1

ln kdk = n lnn− n+ 1.

(4.46)

Each term in this lnn! approximation
contributes one factor to n!:

n! ≈ nn × e−n × e. (4.47)

Each factor has a counterpart in a factor from Stirling’s approximation
(Section 3.2.3). In descending order of importance, the factors in Stirling’s
approximation are

n! ≈ nn × e−n ×√n×
√
2π. (4.48)

The integral approximation reproduces the two most important factors
and almost reproduces the fourth factor: e and

√
2π differ by only 8%.

The only unexplained factor is
√
n.

lnk

1 · · · n
k

From where does the
√
n factor come?

The
√
n factor must come from the fragments

above the ln k curve. They are almost triangles
and would be easier to add if they were triangles.
Therefore, redraw the ln k curve using straight-
line segments (another use of lumping).

lnk

1 · · · n
k

lnk

1 · · · n
k

The resulting triangles would be easier to add if
they were rectangles. Therefore, let’s double each
triangle to make it a rectangle.

What is the sum of these rectangular pieces?

To sum these pieces, lay your right hand along the
k = n vertical line. With your left hand, shove the
pieces to the right until they hit your right hand.
The pieces then stack to form the lnn rectangle.
Because each piece is double the corresponding
triangular protrusion, the triangular protrusions
sum to (lnn)/2. This triangle correction improves the integral approxi-
mation. The resulting approximation for lnn! now has one more term:
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lnn! ≈ n lnn− n+ 1︸ ︷︷ ︸
integral

+
lnn

2︸ ︷︷ ︸
triangles

. (4.49)

Upon exponentiating to get n!, the correction contributes a factor of
√
n.

n! ≈ nn × e−n × e×√n. (4.50)

Compared to Stirling’s approximation, the only remaining difference is
the factor of e that should be

√
2π, an error of only 8%—all from doing

one integral and drawing a few pictures.

Problem 4.31 Underestimate or overestimate?
Does the integral approximation with the triangle correction underestimate or
overestimate n!? Use pictorial reasoning; then check the conclusion numerically.

Problem 4.32 Next correction
The triangle correction is the first of an infinite series of corrections. The cor-
rections include terms proportional to n−2, n−3, . . ., and they are difficult to
derive using only pictures. But the n−1 correction can be derived with pictures.

a. Draw the regions showing the error made by replacing the smooth ln k curve
with a piecewise-linear curve (a curve made of straight segments).

b. Each region is bounded above by a curve that is almost a parabola, whose
area is given by Archimedes’ formula (Problem 4.34)

area =
2

3
× area of the circumscribing rectangle. (4.51)

Use that property to approximate the area of each region.
c. Show that when evaluating lnn! =

∑n
1 ln k, these regions sum to approxi-

mately (1− n−1)/12.
d. What is the resulting, improved constant term (formerly e) in the approxima-

tion to n! and how close is it to
√
2π ? What factor does the n−1 term in the

lnn! approximation contribute to the n! approximation?

These and subsequent corrections are derived in Section 6.3.2 using the technique
of analogy.

4.6 Summary and further problems

For tens of millions of years, evolution has refined our perceptual abilities.
A small child recognizes patterns more reliably and quickly than does
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the largest supercomputer. Pictorial reasoning, therefore, taps the mind’s
vast computational power. It makes us more intelligent by helping us
understand and see large ideas at a glance.
For extensive and enjoyable collections of picture proofs, see the works of
Nelsen [31, 32]. Here are further problems to develop pictorial reasoning.

Problem 4.33 Another picture for the AM–GM inequality
Sketch y = ln x to show that the arithmetic mean of a and b is always greater
than or equal to their geometric mean, with equality when a = b.

Problem 4.34 Archimedes’ formula for the area of a parabola
Archimedes showed (long before calculus!) that the closed parabola
encloses two-thirds of its circumscribing rectangle. Prove this result
by integration.
Show that the closed parabola also encloses two-thirds of the circum-
scribing parallelogram with vertical sides. These pictorial recipes are
useful when approximating functions (for example, in Problem 4.32).

Problem 4.35 Ancient picture for the area of a circle
The ancient Greeks knew that the circumference of a circle with radius r was
2πr. They then used the following picture to show that its area is πr2. Can you
reconstruct the argument?

=

Problem 4.36 Volume of a sphere
Extend the argument of Problem 4.35 to find the volume of a sphere of radius r,
given that its surface area is 4πr2. Illustrate the argument with a sketch.

Problem 4.37 A famous sum

Use pictorial reasoning to approximate the famous Basel sum
∞∑
1

n−2.

Problem 4.38 Newton–Raphson method
In general, solving f(t) = 0 requires approximations. One method is to start with
a guess t0 and to improve it iteratively using the Newton–Raphson method

tn+1 = tn −
f(tn)

f′(tn)
, (4.52)

where f′(tn) is the derivative df/dt evaluated at t = tn. Draw a picture to
justify this recipe; then use the recipe to estimate

√
2. (Then try Problem 4.17.)
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In almost every quantitative problem, the analysis simplifies when you
follow the proverbial advice of doing first things first. First approximate
and understand the most important effect—the big part—then refine your
analysis and understanding. This procedure of successive approximation
or “taking out the big part” generates meaningful, memorable, and usable
expressions. The following examples introduce the related idea of low-
entropy expressions (Section 5.2) and analyze mental multiplication (Sec-
tion 5.1), exponentiation (Section 5.3), quadratic equations (Section 5.4),
and a difficult trigonometric integral (Section 5.5).

5.1 Multiplication using one and few
The first illustration is a method of mental multiplication suited to rough,
back-of-the-envelope estimates. The particular calculation is the storage
capacity of a data CD-ROM. A data CD-ROM has the same format and
storage capacity as a music CD, whose capacity can be estimated as the
product of three factors:

1hr× 3600 s
1hr︸ ︷︷ ︸

playing time

× 4.4× 104 samples
1 s︸ ︷︷ ︸

sample rate

× 2 channels× 16 bits
1 sample︸ ︷︷ ︸

sample size

. (5.1)
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(In the sample-size factor, the two channels are for stereophonic sound.)

Problem 5.1 Sample rate
Look up the Shannon–Nyquist sampling theorem [22], and explain why the
sample rate (the rate at which the sound pressure is measured) is roughly 40 kHz.

Problem 5.2 Bits per sample
Because 216 ∼ 105, a 16-bit sample—as chosen for the CD format—requires
electronics accurate to roughly 0.001%. Why didn’t the designers of the CD
format choose a much larger sample size, say 32 bits (per channel)?

Problem 5.3 Checking units
Check that all the units in the estimate divide out—except for the desired units
of bits.

Back-of-the-envelope calculations use rough estimates such as the playing
time and neglect important factors such as the bits devoted to error detec-
tion and correction. In this and many other estimates, multiplication with
3 decimal places of accuracy would be overkill. An approximate analysis
needs an approximate method of calculation.

What is the data capacity to within a factor of 2?

The units (the biggest part!) are bits (Problem 5.3), and the three numeri-
cal factors contribute 3600× 4.4× 104 × 32. To estimate the product, split
it into a big part and a correction.

The big part: The most important factor in a back-of-the-envelope prod-
uct usually comes from the powers of 10, so evaluate this big part first:
3600 contributes three powers of 10, 4.4 × 104 contributes four, and 32

contributes one. The eight powers of 10 produce a factor of 108.

The correction: After taking out the big part, the remaining part is a correc-
tion factor of 3.6× 4.4× 3.2. This product too is simplified by taking out
its big part. Round each factor to the closest number among three choices:
1, few, or 10. The invented number few lies midway between 1 and 10:
It is the geometric mean of 1 and 10, so (few)2 = 10 and few ≈ 3. In the
product 3.6×4.4×3.2, each factor rounds to few, so 3.6×4.4×3.2 ≈ (few)3

or roughly 30.

The units, the powers of 10, and the correction factor combine to give

capacity ∼ 108 × 30 bits = 3× 109 bits. (5.2)
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This estimate is within a factor of 2 of the exact product (Problem 5.4),
which is itself close to the actual capacity of 5.6× 109 bits.

Problem 5.4 Underestimate or overestimate?
Does 3× 109 overestimate or underestimate 3600× 4.4× 104 × 32? Check your
reasoning by computing the exact product.

Problem 5.5 More practice
Use the one-or-few method of multiplication to perform the following calcula-
tions mentally; then compare the approximate and actual products.

a. 161× 294× 280× 438. The actual product is roughly 5.8× 109.

b. Earth’s surface area A = 4πR2, where the radius is R ∼ 6× 106 m. The actual
surface area is roughly 5.1× 1014 m2.

5.2 Fractional changes and low-entropy expressions

Using the one-or-few method for mental multiplication is fast. For exam-
ple, 3.15 × 7.21 quickly becomes few × 101 ∼ 30, which is within 50% of
the exact product 22.7115. To get a more accurate estimate, round 3.15

to 3 and 7.21 to 7. Their product 21 is in error by only 8%. To reduce the
error further, one could split 3.15 × 7.21 into a big part and an additive
correction. This decomposition produces

(3+ 0.15)(7+ 0.21) = 3× 7︸ ︷︷ ︸
big part

+ 0.15× 7+ 3× 0.21+ 0.15× 0.21︸ ︷︷ ︸
additivecorrection

. (5.3)

The approach is sound, but the literal application of taking out the big
part produces a messy correction that is hard to remember and under-
stand. Slightly modified, however, taking out the big part provides a
clean and intuitive correction. As gravy, developing the improved cor-
rection introduces two important street-fighting ideas: fractional changes
(Section 5.2.1) and low-entropy expressions (Section 5.2.2). The improved
correction will then, as a first of many uses, help us estimate the energy
saved by highway speed limits (Section 5.2.3).

5.2.1 Fractional changes

The hygienic alternative to an additive correction is to split the product
into a big part and a multiplicative correction:
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3.15× 7.21 = 3× 7︸ ︷︷ ︸
big part

× (1+ 0.05)× (1+ 0.03)︸ ︷︷ ︸
correction factor

. (5.4)

Can you find a picture for the correction factor?

1

1

0.05

0.03

1 0.05

0.03 ≈ 0The correction factor is the area of a rectangle with
width 1 + 0.05 and height 1 + 0.03. The rectangle
contains one subrectangle for each term in the ex-
pansion of (1+ 0.05)× (1+ 0.03). Their combined
area of roughly 1 + 0.05 + 0.03 represents an 8%
fractional increase over the big part. The big part
is 21, and 8% of it is 1.68, so 3.15 × 7.21 = 22.68,
which is within 0.14% of the exact product.

Problem 5.6 Picture for the fractional error
What is the pictorial explanation for the fractional error of roughly 0.15%?

Problem 5.7 Try it yourself
Estimate 245×42 by rounding each factor to a nearby multiple of 10, and compare
this big part with the exact product. Then draw a rectangle for the correction
factor, estimate its area, and correct the big part.

5.2.2 Low-entropy expressions

The correction to 3.15 × 7.21 was complicated as an absolute or additive
change but simple as a fractional change. This contrast is general. Using
the additive correction, a two-factor product becomes

(x+ Δx)(y+ Δy) = xy+ xΔy+ yΔx+ ΔxΔy︸ ︷︷ ︸
additive correction

. (5.5)

Problem 5.8 Rectangle picture
Draw a rectangle representing the expansion

(x+ Δx)(y+ Δy) = xy+ xΔy+ yΔx+ ΔxΔy. (5.6)

When the absolute changes Δx and Δy are small (x � Δx and y � Δy),
the correction simplifies to xΔy+yΔx, but even so it is hard to remember
because it has many plausible but incorrect alternatives. For example, it
could plausibly contain terms such as ΔxΔy, xΔx, or yΔy. The extent
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of the plausible alternatives measures the gap between our intuition and
reality; the larger the gap, the harder the correct result must work to fill
it, and the harder we must work to remember the correct result.
Such gaps are the subject of statistical mechanics and information theory
[20, 21], which define the gap as the logarithm of the number of plausible
alternatives and call the logarithmic quantity the entropy. The logarithm
does not alter the essential point that expressions differ in the number of
plausible alternatives and that high-entropy expressions [28]—ones with
many plausible alternatives—are hard to remember and understand.
In contrast, a low-entropy expression allows few plausible alternatives,
and elicits, “Yes! How could it be otherwise?!” Much mathematical and
scientific progress consists of finding ways of thinking that turn high-
entropy expressions into easy-to-understand, low-entropy expressions.

What is a low-entropy expression for the correction to the product xy?

A multiplicative correction, being dimensionless, automatically has lower
entropy than the additive correction: The set of plausible dimensionless
expressions is much smaller than the full set of plausible expressions.
The multiplicative correction is (x + Δx)(y + Δy)/xy. As written, this
ratio contains gratuitous entropy. It constructs two dimensioned sums
x+Δx and y+Δy, multiplies them, and finally divides the product by xy.
Although the result is dimensionless, it becomes so only in the last step.
A cleaner method is to group related factors by making dimensionless
quantities right away:

(x+ Δx)(y+ Δy)

xy
=

x+ Δx

x

y+ Δy

y
=

(
1+

Δx

x

)(
1+

Δy

y

)
. (5.7)

The right side is built only from the fundamental dimensionless quantity 1

and from meaningful dimensionless ratios: (Δx)/x is the fractional change
in x, and (Δy)/y is the fractional change in y.
The gratuitous entropy came from mixing x+ Δx, y+ Δy, x, and y willy
nilly, and it was removed by regrouping or unmixing. Unmixing is dif-
ficult with physical systems. Try, for example, to remove a drop of food
coloring mixed into a glass of water. The problem is that a glass of
water contains roughly 1025 molecules. Fortunately, most mathematical
expressions have fewer constituents. We can often regroup and unmix
the mingled pieces and thereby reduce the entropy of the expression.
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Problem 5.9 Rectangle for the correction factor
Draw a rectangle representing the low-entropy correction factor(

1+
Δx

x

)(
1+

Δy

y

)
. (5.8)

A low-entropy correction factor produces a low-entropy fractional change:

Δ (xy)

xy
=

(
1+

Δx

x

)(
1+

Δy

y

)
− 1 =

Δx

x
+

Δy

y
+

Δx

x

Δy

y
, (5.9)

where Δ(xy)/xy is the fractional change from xy to (x + Δx)(y + Δy).
The rightmost term is the product of two small fractions, so it is small
compared to the preceding two terms. Without this small, quadratic term,

Δ (xy)

xy
≈ Δx

x
+

Δy

y
. (5.10)

Small fractional changes simply add!

This fractional-change rule is far simpler than the corresponding approx-
imate rule that the absolute change is xΔy + yΔx. Simplicity indicates
low entropy; indeed, the only plausible alternative to the proposed rule
is the possibility that fractional changes multiply. And this conjecture is
not likely: When Δy = 0, it predicts that Δ(xy) = 0 no matter the value
of Δx (this prediction is explored also in Problem 5.12).

Problem 5.10 Thermal expansion
If, due to thermal expansion, a metal sheet expands in each dimension by 4%,
what happens to its area?

Problem 5.11 Price rise with a discount
Imagine that inflation, or copyright law, increases the price of a book by 10%
compared to last year. Fortunately, as a frequent book buyer, you start getting a
store discount of 15%. What is the net price change that you see?

5.2.3 Squaring

In analyzing the engineered and natural worlds, a common operation is
squaring—a special case of multiplication. Squared lengths are areas, and
squared speeds are proportional to the drag on most objects (Section 2.4):

Fd ∼ ρv2A, (5.11)
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where v is the speed of the object, A is its cross-sectional area, and ρ is
the density of the fluid. As a consequence, driving at highway speeds for
a distance d consumes an energy E = Fdd ∼ ρAv2d. Energy consumption
can therefore be reduced by driving more slowly. This possibility became
important to Western countries in the 1970s when oil prices rose rapidly
(see [7] for an analysis). As a result, the United States instituted a highway
speed limit of 55mph (90 kph).

By what fraction does gasoline consumption fall due to driving 55mph instead
of 65mph?

A lower speed limit reduces gasoline consumption by reducing the drag
force ρAv2 and by reducing the driving distance d: People measure and
regulate their commuting more by time than by distance. But finding a
new home or job is a slow process. Therefore, analyze first things first—
assume for this initial analysis that the driving distance d stays fixed (then
try Problem 5.14).
With that assumption, E is proportional to v2, and

ΔE

E
= 2× Δv

v
. (5.12)

Going from 65mph to 55mph is roughly a 15% drop in v, so the energy
consumption drops by roughly 30%. Highway driving uses a significant
fraction of the oil consumed by motor vehicles, which in the United States
consume a significant fraction of all oil consumed. Thus the 30% drop
substantially reduced total US oil consumption.

Problem 5.12 A tempting error
If A and x are related by A = x2, a tempting conjecture is that

ΔA

A
≈
(
Δx

x

)2
. (5.13)

Disprove this conjecture using easy cases (Chapter 2).

Problem 5.13 Numerical estimates
Use fractional changes to estimate 6.33. How accurate is the estimate?

Problem 5.14 Time limit on commuting
Assume that driving time, rather than distance, stays fixed as highway driving
speeds fall by 15%. What is the resulting fractional change in the gasoline con-
sumed by highway driving?
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Problem 5.15 Wind power
The power generated by an ideal wind turbine is proportional to v3 (why?). If
wind speeds increase by a mere 10%, what is the effect on the generated power?
The quest for fast winds is one reason that wind turbines are placed on cliffs or
hilltops or at sea.

5.3 Fractional changes with general exponents

The fractional-change approximations for changes in x2 (Section 5.2.3) and
in x3 (Problem 5.13) are special cases of the approximation for xn

Δ (xn)

xn
≈ n× Δx

x
. (5.14)

This rule offers a method for mental division (Section 5.3.1), for estimating
square roots (Section 5.3.2), and for judging a common explanation for the
seasons (Section 5.3.3). The rule requires only that the fractional change
be small and that the exponent n not be too large (Section 5.3.4).

5.3.1 Rapid mental division

The special case n = −1 provides the method for rapid mental division.
As an example, let’s estimate 1/13. Rewrite it as (x + Δx)−1 with x = 10

and Δx = 3. The big part is x−1 = 0.1. Because (Δx)/x = 30%, the
fractional correction to x−1 is roughly −30%. The result is 0.07.

1

13
≈ 1

10
− 30% = 0.07, (5.15)

where the “−30%” notation, meaning “decrease the previous object by
30%,” is a useful shorthand for a factor of 1− 0.3.

How accurate is the estimate, and what is the source of the error?

The estimate is in error by only 9%. The error arises because the linear
approximation

Δ
(
x−1
)

x−1
≈ −1× Δx

x
(5.16)

does not include the square (or higher powers) of the fractional change
(Δx)/x (Problem 5.17 asks you to find the squared term).
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How can the error in the linear approximation be reduced?

To reduce the error, reduce the fractional change. Because the fractional
change is determined by the big part, let’s increase the accuracy of the
big part. Accordingly, multiply 1/13 by 8/8, a convenient form of 1, to
construct 8/104. Its big part 0.08 approximates 1/13 already to within 4%.
To improve it, write 1/104 as (x + Δx)−1 with x = 100 and Δx = 4. The
fractional change (Δx)/x is now 0.04 (rather than 0.3); and the fractional
correction to 1/x and 8/x is a mere −4%. The corrected estimate is 0.0768:

1

13
≈ 0.08− 4% = 0.08− 0.0032 = 0.0768. (5.17)

This estimate can be done mentally in seconds and is accurate to 0.13%!

Problem 5.16 Next approximation
Multiply 1/13 by a convenient form of 1 to make a denominator near 1000; then
estimate 1/13. How accurate is the resulting approximation?

Problem 5.17 Quadratic approximation
Find A, the coefficient of the quadratic term in the improved fractional-change
approximation

Δ
(
x−1
)

x−1
≈ −1× Δx

x
+A×

(
Δx

x

)2
. (5.18)

Use the resulting approximation to improve the estimates for 1/13.

Problem 5.18 Fuel efficiency
Fuel efficiency is inversely proportional to energy consumption. If a 55mph
speed limit decreases energy consumption by 30%, what is the new fuel efficiency
of a car that formerly got 30 miles per US gallon (12.8 kilometers per liter)?

5.3.2 Square roots

The fractional exponent n = 1/2 provides the method for estimating
square roots. As an example, let’s estimate

√
10. Rewrite it as (x+Δx)1/2

with x = 9 and Δx = 1. The big part x1/2 is 3. Because (Δx)/x = 1/9 and
n = 1/2, the fractional correction is 1/18. The corrected estimate is
√
10 ≈ 3×

(
1+

1

18

)
≈ 3.1667. (5.19)

The exact value is 3.1622 . . ., so the estimate is accurate to 0.14%.
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Problem 5.19 Overestimate or underestimate?
Does the linear fractional-change approximation overestimate all square roots (as
it overestimated

√
10)? If yes, explain why; if no, give a counterexample.

Problem 5.20 Cosine approximation
Use the small-angle approximation sin θ ≈ θ to show that cos θ ≈ 1− θ2/2.

Problem 5.21 Reducing the fractional change
To reduce the fractional change when estimating

√
10, rewrite it as

√
360/6 and

then estimate
√
360. How accurate is the resulting estimate for

√
10?

Problem 5.22 Another method to reduce the fractional change
Because

√
2 is fractionally distant from the nearest integer square roots

√
1 and√

4, fractional changes do not give a direct and accurate estimate of
√
2. A

similar problem occurred in estimating ln 2 (Section 4.3); there, rewriting 2 as
(4/3)/(2/3) improved the accuracy. Does that rewriting help estimate

√
2?

Problem 5.23 Cube root
Estimate 21/3 to within 10%.

5.3.3 A reason for the seasons?

Summers are warmer than winters, it is often alleged, because the earth is
closer to the sun in the summer than in the winter. This common explana-
tion is bogus for two reasons. First, summers in the southern hemisphere
happen alongside winters in the northern hemisphere, despite almost
no difference in the respective distances to the sun. Second, as we will
now estimate, the varying earth–sun distance produces too small a tem-
perature difference. The causal chain—that the distance determines the
intensity of solar radiation and that the intensity determines the surface
temperature—is most easily analyzed using fractional changes.

Intensity of solar radiation: The intensity is the solar power divided by the
area over which it spreads. The solar power hardly changes over a year
(the sun has existed for several billion years); however, at a distance r

from the sun, the energy has spread over a giant sphere with surface
area ∼ r2. The intensity I therefore varies according to I ∝ r−2. The
fractional changes in radius and intensity are related by

ΔI

I
≈ −2× Δr

r
. (5.20)
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Surface temperature: The incoming solar energy cannot accumulate and
returns to space as blackbody radiation. Its outgoing intensity depends
on the earth’s surface temperature T according to the Stefan–Boltzmann
law I = σT4 (Problem 1.12), where σ is the Stefan–Boltzmann constant.
Therefore T ∝ I1/4. Using fractional changes,

ΔT

T
≈ 1

4
× ΔI

I
. (5.21)

This relation connects intensity and temperature. The temperature and
distance are connected by (ΔI)/I = −2 × (Δr)/r. When joined, the two
relations connect distance and temperature as follows:

− 2
1

4

ΔT

T
≈ −

1

2
× Δr

r

Δr

r

ΔI
I ≈ −2× Δr

r

I ∝ r−2 T ∝ I1/4

l

rmax rmin
0◦

θr

The next step in the computation is to estimate
the input (Δr)/r—namely, the fractional change
in the earth–sun distance. The earth orbits the
sun in an ellipse; its orbital distance is

r =
l

1+ ε cos θ
, (5.22)

where ε is the eccentricity of the orbit, θ is the
polar angle, and l is the semilatus rectum. Thus r varies from rmin =

l/(1+ ε) (when θ = 0◦) to rmax = l/(1− ε) (when θ = 180◦). The increase
from rmin to l contributes a fractional change of roughly ε. The increase
from l to rmax contributes another fractional change of roughly ε. Thus,
r varies by roughly 2ε. For the earth’s orbit, ε = 0.016, so the earth–sun
distance varies by 0.032 or 3.2% (making the intensity vary by 6.4%).

Problem 5.24 Where is the sun?

rmax

rmin
The preceding diagram of the earth’s orbit placed the sun away
from the center of the ellipse. The diagram to the right shows
the sun at an alternative and perhaps more natural location: at
the center of the ellipse. What physical laws, if any, prevent
the sun from sitting at the center of the ellipse?

Problem 5.25 Check the fractional change
Look up the minimum and maximum earth–sun distances and check that the
distance does vary by 3.2% from minimum to maximum.
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A 3.2% increase in distance causes a slight drop in temperature:
ΔT

T
≈ −

1

2
× Δr

r
= −1.6%. (5.23)

However, man does not live by fractional changes alone and experiences
the absolute temperature change ΔT .

ΔT = −1.6%× T. (5.24)

In winter T ≈ 0◦ C, so is ΔT ≈ 0◦ C?

If our calculation predicts that ΔT ≈ 0◦ C, it must be wrong. An even
less plausible conclusion results from measuring T in Fahrenheit degrees,
which makes T often negative in parts of the northern hemisphere. Yet
ΔT cannot flip its sign just because T is measured in Fahrenheit degrees!
Fortunately, the temperature scale is constrained by the Stefan–Boltzmann
law. For blackbody flux to be proportional to T4, temperature must be
measured relative to a state with zero thermal energy: absolute zero.
Neither the Celsius nor the Fahrenheit scale satisfies this requirement.
In contrast, the Kelvin scale does measure temperature relative to absolute
zero. On the Kelvin scale, the average surface temperature is T ≈ 300K;
thus, a 1.6% change in T makes ΔT ≈ 5K. A 5K change is also a 5◦ C
change—Kelvin and Celsius degrees are the same size, although the scales
have different zero points. (See also Problem 5.26.) A typical tempera-
ture change between summer and winter in temperate latitudes is 20◦ C—
much larger than the predicted 5◦ C change, even after allowing for errors
in the estimate. A varying earth–sun distance is a dubious explanation
of the reason for the seasons.

Problem 5.26 Converting to Fahrenheit
The conversion between Fahrenheit and Celsius temperatures is

F = 1.8C+ 32, (5.25)

so a change of 5◦ C should be a change of 41◦ F—sufficiently large to explain the
seasons! What is wrong with this reasoning?

Problem 5.27 Alternative explanation
If a varying distance to the sun cannot explain the seasons, what can? Your
proposal should, in passing, explain why the northern and southern hemispheres
have summer 6 months apart.
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5.3.4 Limits of validity

The linear fractional-change approximation
Δ (xn)

xn
≈ n× Δx

x
(5.26)

has been useful. But when is it valid? To investigate without drowning
in notation, write z for Δx; then choose x = 1 to make z the absolute
and the fractional change. The right side becomes nz, and the linear
fractional-change approximation is equivalent to

(1+ z)n ≈ 1+ nz. (5.27)

The approximation becomes inaccurate when z is too large: for example,
when evaluating

√
1+ z with z = 1 (Problem 5.22). Is the exponent n

also restricted? The preceding examples illustrated only moderate-sized
exponents: n = 2 for energy consumption (Section 5.2.3), −2 for fuel
efficiency (Problem 5.18), −1 for reciprocals (Section 5.3.1), 1/2 for square
roots (Section 5.3.2), and −2 and 1/4 for the seasons (Section 5.3.3). We
need further data.

What happens in the extreme case of large exponents?

With a large exponent such as n = 100 and, say, z = 0.001, the approx-
imation predicts that 1.001100 ≈ 1.1—close to the true value of 1.105 . . .

However, choosing the same n alongside z = 0.1 (larger than 0.001 but
still small) produces the terrible prediction

1.1100︸ ︷︷ ︸
(1+z)n

= 1+ 100× 0.1︸ ︷︷ ︸
nz

= 11; (5.28)

1.1100 is roughly 14,000, more than 1000 times larger than the prediction.
Both predictions used large n and small z, yet only one prediction was
accurate; thus, the problem cannot lie in n or z alone. Perhaps the culprit
is the dimensionless product nz. To test that idea, hold nz constant while
trying large values of n. For nz, a sensible constant is 1—the simplest
dimensionless number. Here are several examples.

1.110 ≈ 2.59374,

1.01100 ≈ 2.70481,

1.0011000 ≈ 2.71692.

(5.29)
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In each example, the approximation incorrectly predicts that (1+ z)n = 2.

What is the cause of the error?

k
(
1+ 10−k

)10k

1 2.5937425

2 2.7048138

3 2.7169239

4 2.7181459

5 2.7182682

6 2.7182805

7 2.7182817

To find the cause, continue the sequence beyond
1.0011000 and hope that a pattern will emerge: The
values seem to approach e = 2.718281828 . . ., the
base of the natural logarithms. Therefore, take the
logarithm of the whole approximation.

ln(1+ z)n = n ln(1+ z). (5.30)

Pictorial reasoning showed that ln(1 + z) ≈ z when
z � 1 (Section 4.3). Thus, n ln(1 + z) ≈ nz, mak-
ing (1 + z)n ≈ enz. This improved approximation
explains why the approximation (1 + z)n ≈ 1 + nz failed with large nz:
Only when nz � 1 is enz approximately 1 + nz. Therefore, when z � 1

the two simplest approximation are

(1+ z)n ≈
{
1+ nz (z� 1 and nz� 1),
enz (z� 1 and nz unrestricted). (5.31)

n

z

n
z
=
1 n

/z
=
1

z
=

1

n = 1
1+nz

enz
znen/z

zn

zn

1+nlnz

The diagram shows, across the whole
n–z plane, the simplest approximation
in each region. The axes are logarith-
mic and n and z are assumed positive:
The right half plane shows z 
 1, and
the upper half plane shows n 
 1. On
the lower right, the boundary curve is
n ln z = 1. Explaining the boundaries
and extending the approximations is an
instructive exercise (Problem 5.28).

Problem 5.28 Explaining the approximation plane
In the right half plane, explain the n/z = 1 and n ln z = 1 boundaries. For the
whole plane, relax the assumption of positive n and z as far as possible.

Problem 5.29 Binomial-theorem derivation
Try the following alternative derivation of (1+z)n ≈ enz (where n
 1). Expand
(1 + z)n using the binomial theorem, simplify the products in the binomial
coefficients by approximating n − k as n, and compare the resulting expansion
to the Taylor series for enz.
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5.4 Successive approximation: How deep is the well?

The next illustration of taking out the big part emphasizes successive
approximation and is disguised as a physics problem.

You drop a stone down a well of unknown depth h and hear the splash 4 s
later. Neglecting air resistance, find h to within 5%. Use cs = 340m s−1 as
the speed of sound and g = 10m s−2 as the strength of gravity.

Approximate and exact solutions give almost the same well depth, but
offer significantly different understandings.

5.4.1 Exact depth

The depth is determined by the constraint that the 4 s wait splits into two
times: the rock falling freely down the well and the sound traveling up
the well. The free-fall time is

√
2h/g (Problem 1.3), so the total time is

T =

√
2h

g︸ ︷︷ ︸
rock

+
h

cs︸︷︷︸
sound

. (5.32)

To solve for h exactly, either isolate the square root on one side and square
both sides to get a quadratic equation in h (Problem 5.30); or, for a less
error-prone method, rewrite the constraint as a quadratic equation in a
new variable z =

√
h.

Problem 5.30 Other quadratic
Solve for h by isolating the square root on one side and squaring both sides.
What are the advantages and disadvantages of this method in comparison with
the method of rewriting the constraint as a quadratic in z =

√
h?

As a quadratic equation in z =
√
h, the constraint is

1

cs
z2 +

√
2

g
z− T = 0. (5.33)

Using the quadratic formula and choosing the positive root yields

z =
−
√
2/g+

√
2/g+ 4T/cs

2/cs
. (5.34)

Because z2 = h,
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h =

(
−
√
2/g+

√
2/g+ 4T/cs

2/cs

)2

. (5.35)

Substituting g = 10m s−2 and cs = 340m s−1 gives h ≈ 71.56m.
Even if the depth is correct, the exact formula for it is a mess. Such high-
entropy horrors arise frequently from the quadratic formula; its use often
signals the triumph of symbol manipulation over thought. Exact answers,
we will find, may be less useful than approximate answers.

5.4.2 Approximate depth

To find a low-entropy, approximate depth, identify the big part—the
most important effect. Here, most of the total time is the rock’s free
fall: The rock’s maximum speed, even if it fell for the entire 4 s, is only
gT = 40m s−1, which is far below cs. Therefore, the most important effect
should arise in the extreme case of infinite sound speed.

If cs =∞, how deep is the well?

In this zeroth approximation, the free-fall time t0 is the full time T = 4 s,
so the well depth h0 becomes

h0 =
1

2
gt20 = 80m. (5.36)

Is this approximate depth an overestimate or underestimate? How accurate is it?

This approximation neglects the sound-travel time, so it overestimates
the free-fall time and therefore the depth. Compared to the true depth
of roughly 71.56m, it overestimates the depth by only 11%—reasonable
accuracy for a quick method offering physical insight. Furthermore, this
approximation suggests its own refinement.

How can this approximation be improved?

T t h

1
2gt

2

T − h
cs

To improve it, use the approximate depth h0 to approx-
imate the sound-travel time.

tsound ≈ h0

cs
≈ 0.24 s. (5.37)

The remaining time is the next approximation to the free-fall time.
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t1 = T −
h0

cs
≈ 3.76 s. (5.38)

In that time, the rock falls a distance gt21/2, so the next approximation to
the depth is

h1 =
1

2
gt21 ≈ 70.87m. (5.39)

Is this approximate depth an overestimate or underestimate? How accurate is it?

The calculation of h1 used h0 to estimate the sound-travel time. Because
h0 overestimates the depth, the procedure overestimates the sound-travel
time and, by the same amount, underestimates the free-fall time. Thus
h1 underestimates the depth. Indeed, h1 is slightly smaller than the true
depth of roughly 71.56m—but by only 1.3%.
The method of successive approximation has several advantages over solv-
ing the quadratic formula exactly. First, it helps us develop a physical
understanding of the system; we realize, for example, that most of the
T = 4 s is spent in free fall, so the depth is roughly gT2/2. Second, it
has a pictorial explanation (Problem 5.34). Third, it gives a sufficiently
accurate answer quickly. If you want to know whether it is safe to jump
into the well, why calculate the depth to three decimal places?
Finally, the method can handle small changes in the model. Maybe the
speed of sound varies with depth, or air resistance becomes important
(Problem 5.32). Then the brute-force, quadratic-formula method fails. The
quadratic formula and the even messier cubic and the quartic formulas
are rare closed-form solutions to complicated equations. Most equations
have no closed-form solution. Therefore, a small change to a solvable
model usually produces an intractable model—if we demand an exact
answer. The method of successive approximation is a robust alternative
that produces low-entropy, comprehensible solutions.

Problem 5.31 Parameter-value inaccuracies
What is h2, the second approximation to the depth? Compare the error in h1

and h2 with the error made by using g = 10m s−2.

Problem 5.32 Effect of air resistance
Roughly what fractional error in the depth is produced by neglecting air resis-
tance (Section 2.4.2)? Compare this error to the error in the first approximation
h1 and in the second approximation h2 (Problem 5.31).
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Problem 5.33 Dimensionless form of the well-depth analysis
Even the messiest results are cleaner and have lower entropy in dimensionless
form. The four quantities h, g, T , and cs produce two independent dimensionless
groups (Section 2.4.1). An intuitively reasonable pair are

h ≡ h

gT2
and T ≡ gT

cs
. (5.40)

a. What is a physical interpretation of T?

b. With two groups, the general dimensionless form is h = f(T). What is h in
the easy case T → 0?

c. Rewrite the quadratic-formula solution

h =

(
−
√

2/g+
√

2/g+ 4T/cs
2/cs

)2

(5.41)

as h = f(T). Then check that f(T) behaves correctly in the easy case T → 0.

Problem 5.34 Spacetime diagram of the well depth

depth

t

4 s
rock

sound
wavefront

How does the spacetime diagram [44] illustrate
the successive approximation of the well depth?
On the diagram, mark h0 (the zeroth approxi-
mation to the depth), h1, and the exact depth
h. Mark t0, the zeroth approximation to the
free-fall time. Why are portions of the rock and
sound-wavefront curves dotted? How would
you redraw the diagram if the speed of sound
doubled? If g doubled?

5.5 Daunting trigonometric integral

The final example of taking out the big part is to estimate a daunting
trigonometric integral that I learned as an undergraduate. My classmates
and I spent many late nights in the physics library solving homework
problems; the graduate students, doing the same for their courses, would
regale us with their favorite mathematics and physics problems.
The integral appeared on the mathematical-preliminaries exam to enter
the Landau Institute for Theoretical Physics in the former USSR. The
problem is to evaluate∫π/2

−π/2

(cos t)100 dt (5.42)
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to within 5% in less than 5min without using a calculator or computer!

That (cos t)100 looks frightening. Most trigonometric identities do not
help. The usually helpful identity (cos t)2 = (cos 2t− 1)/2 produces only

(cos t)100 =

(
cos 2t− 1

2

)50

, (5.43)

which becomes a trigonometric monster upon expanding the 50th power.

A clue pointing to a simpler method is that 5% accuracy is sufficient—so,
find the big part! The integrand is largest when t is near zero. There,
cos t ≈ 1− t2/2 (Problem 5.20), so the integrand is roughly

(cos t)100 ≈
(
1−

t2

2

)100

. (5.44)

It has the familiar form (1 + z)n, with fractional change z = −t2/2 and
exponent n = 100. When t is small, z = −t2/2 is tiny, so (1+ z)n may be
approximated using the results of Section 5.3.4:

(1+ z)n ≈
{
1+ nz (z� 1 and nz� 1)

enz (z� 1 and nz unrestricted). (5.45)

Because the exponent n is large, nz can be large even when t and z are
small. Therefore, the safest approximation is (1+ z)n ≈ enz; then

(cos t)100 ≈
(
1−

t2

2

)100

≈ e−50t2 . (5.46)

cost
A cosine raised to a high power becomes a Gaussian!
As a check on this surprising conclusion, computer-
generated plots of (cos t)n for n = 1 . . . 5 show a
Gaussian bell shape taking form as n increases.

Even with this graphical evidence, replacing (cos t)100 by a Gaussian is a
bit suspicious. In the original integral, t ranges from −π/2 to π/2, and
these endpoints are far outside the region where cos t ≈ 1 − t2/2 is an
accurate approximation. Fortunately, this issue contributes only a tiny
error (Problem 5.35). Ignoring this error turns the original integral into a
Gaussian integral with finite limits:∫π/2

−π/2

(cos t)100 dt ≈
∫π/2
−π/2

e−50t2 dt. (5.47)
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Unfortunately, with finite limits the integral has no closed form. But
extending the limits to infinity produces a closed form while contributing
almost no error (Problem 5.36). The approximation chain is now∫π/2

−π/2

(cos t)100 dt ≈
∫π/2
−π/2

e−50t2 dt ≈
∫∞
−∞

e−50t2 dt. (5.48)

Problem 5.35 Using the original limits
The approximation cos t ≈ 1− t2/2 requires that t be small. Why doesn’t using
the approximation outside the small-t range contribute a significant error?

Problem 5.36 Extending the limits
Why doesn’t extending the integration limits from ±π/2 to ±∞ contribute a
significant error?

The last integral is an old friend (Section 2.1):
∫∞
−∞ e−αt2 dt =

√
π/α. With

α = 50, the integral becomes
√
π/50. Conveniently, 50 is roughly 16π, so

the square root—and our 5% estimate—is roughly 0.25.
For comparison, the exact integral is (Problem 5.41)∫π/2

−π/2

(cos t)n dt = 2−n

(
n

n/2

)
π. (5.49)

When n = 100, the binomial coefficient and power of two produce
12611418068195524166851562157

158456325028528675187087900672
π ≈ 0.25003696348037. (5.50)

Our 5-minute, within-5% estimate of 0.25 is accurate to almost 0.01%!

Problem 5.37 Sketching the approximations
Plot (cos t)100 and its two approximations e−50t2 and 1− 50t2.

Problem 5.38 Simplest approximation
Use the linear fractional-change approximation (1 − t2/2)100 ≈ 1 − 50t2 to
approximate the integrand; then integrate it over the range where 1 − 50t2 is
positive. How close is the result of this 1-minute method to the exact value
0.2500 . . .?

Problem 5.39 Huge exponent
Estimate∫π/2

−π/2
(cos t)10000 dt. (5.51)
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Problem 5.40 How low can you go?
Investigate the accuracy of the approximation∫π/2

−π/2
(cos t)n dt ≈

√
π

n
, (5.52)

for small n, including n = 1.

Problem 5.41 Closed form
To evaluate the integral∫π/2

−π/2
(cos t)100 dt (5.53)

in closed form, use the following steps:

a. Replace cos t with (eit + e−it)
/
2.

b. Use the binomial theorem to expand the 100th power.

c. Pair each term like eikt with a counterpart e−ikt; then integrate their sum
from −π/2 to π/2. What value or values of k produce a sum whose integral
is nonzero?

5.6 Summary and further problems

Upon meeting a complicated problem, divide it into a big part—the most
important effect—and a correction. Analyze the big part first, and worry
about the correction afterward. This successive-approximation approach,
a species of divide-and-conquer reasoning, gives results automatically
in a low-entropy form. Low-entropy expressions admit few plausible
alternatives; they are therefore memorable and comprehensible. In short,
approximate results can be more useful than exact results.

Problem 5.42 Large logarithm
What is the big part in ln(1+e2)? Give a short calculation to estimate ln(1+e2)
to within 2%.

Problem 5.43 Bacterial mutations
In an experiment described in a Caltech biology seminar in the 1990s, researchers
repeatedly irradiated a population of bacteria in order to generate mutations. In
each round of radiation, 5% of the bacteria got mutated. After 140 rounds,
roughly what fraction of bacteria were left unmutated? (The seminar speaker
gave the audience 3 s to make a guess, hardly enough time to use or even find
a calculator.)
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Problem 5.44 Quadratic equations revisited
The following quadratic equation, inspired by [29], describes a very strongly
damped oscillating system.

s2 + 109s+ 1 = 0. (5.54)

a. Use the quadratic formula and a standard calculator to find both roots of the
quadratic. What goes wrong and why?

b. Estimate the roots by taking out the big part. (Hint: Approximate and solve
the equation in appropriate extreme cases.) Then improve the estimates using
successive approximation.

c. What are the advantages and disadvantages of the quadratic-formula analysis
versus successive approximation?

Problem 5.45 Normal approximation to the binomial distribution
The binomial expansion(

1

2
+

1

2

)2n
(5.55)

contains terms of the form

f(k) ≡
(

2n

n− k

)
2−2n, (5.56)

where k = −n . . . n. Each term f(k) is the probability of tossing n − k heads
(and n + k tails) in 2n coin flips; f(k) is the so-called binomial distribution
with parameters p = q = 1/2. Approximate this distribution by answering the
following questions:

a. Is f(k) an even or an odd function of k? For what k does f(k) have its
maximum?

b. Approximate f(k) when k� n and sketch f(k). Therefore, derive and explain
the normal approximation to the binomial distribution.

c. Use the normal approximation to show that the variance of this binomial
distribution is n/2.

Problem 5.46 Beta function
The following integral appears often in Bayesian inference:

f(a, b) =

∫1
0
xa(1− x)b dx, (5.57)

where f(a − 1, b − 1) is the Euler beta function. Use street-fighting methods to
conjecture functional forms for f(a, 0), f(a, a), and, finally, f(a, b). Check your
conjectures with a high-quality table of integrals or a computer-algebra system
such as Maxima.
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When the going gets tough, the tough lower their standards. This idea,
the theme of the whole book, underlies the final street-fighting tool of
reasoning by analogy. Its advice is simple: Faced with a difficult problem,
construct and solve a similar but simpler problem—an analogous problem.
Practice develops fluency. The tool is introduced in spatial trigonometry
(Section 6.1); sharpened on solid geometry and topology (Section 6.2);
then applied to discrete mathematics (Section 6.3) and, in the farewell
example, to an infinite transcendental sum (Section 6.4).

6.1 Spatial trigonometry: The bond angle in methane

θ

The first analogy comes from spatial trigonometry. In
methane (chemical formula CH4), a carbon atom sits at
the center of a regular tetrahedron, and one hydrogen
atom sits at each vertex. What is the angle θ between
two carbon–hydrogen bonds?
Angles in three dimensions are hard to visualize. Try, for
example, to imagine and calculate the angle between two faces of a regular
tetrahedron. Because two-dimensional angles are easy to visualize, let’s
construct and analyze an analogous planar molecule. Knowing its bond
angle might help us guess methane’s bond angle.
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Should the analogous planar molecule have four or three hydrogens?

Four hydrogens produce four bonds which, when spaced
regularly in a plane, produce two different bond angles. In
contrast, methane contains only one bond angle. Therefore,
using four hydrogens alters a crucial feature of the original
problem. The likely solution is to construct the analogous
planar molecule using only three hydrogens.

θ
Three hydrogens arranged regularly in a plane create only
one bond angle: θ = 120◦. Perhaps this angle is the bond
angle in methane! One data point, however, is a thin reed
on which to hang a prediction for higher dimensions. The
single data point for two dimensions (d = 2) is consistent with numerous
conjectures—for example, that in d dimensions the bond angle is 120◦ or
(60d)◦ or much else.

θ
Selecting a reasonable conjecture requires gathering further
data. Easily available data comes from an even simpler yet
analogous problem: the one-dimensional, linear molecule
CH2. Its two hydrogens sit opposite one another, so the
two C–H bonds form an angle of θ = 180◦.

Based on the accumulated data, what are reasonable conjectures for the three-
dimensional angle θ3?

d θd

1 180◦

2 120

3 ?

The one-dimensional molecule eliminates the conjecture that
θd = (60d)◦. It also suggests new conjectures—for example,
that θd = (240 − 60d)◦ or θd = 360◦/(d+ 1). Testing these
conjectures is an ideal task for the method of easy cases.
The easy-cases test of higher dimensions (high d) refutes the
conjecture that θd = (240 − 60d)◦. For high d, it predicts
implausible bond angles—namely, θ = 0 for d = 4 and θ < 0 for d > 4.
Fortunately, the second suggestion, θd = 360◦/(d+ 1), passes the same
easy-cases test. Let’s continue to test it by evaluating its prediction for
methane—namely, θ3 = 90◦. Imagine then a big brother of methane: a
CH6 molecule with carbon at the center of a cube and six hydrogens at the
face centers. Its small bond angle is 90◦. (The other bond angle is 180◦.)
Now remove two hydrogens to turn CH6 into CH4, evenly spreading out
the remaining four hydrogens. Reducing the crowding raises the small
bond angle above 90◦—and refutes the prediction that θ3 = 90◦.
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Problem 6.1 How many hydrogens?
How many hydrogens are needed in the analogous four- and five-dimensional
bond-angle problems? Use this information to show that θ4 > 90◦. Is θd > 90◦
for all d?

The data so far have refuted the simplest rational-function conjectures
(240−60d)◦ and 360◦/(d+1). Although other rational-function conjectures
might survive, with only two data points the possibilities are too vast.
Worse, θd might not even be a rational function of d.

Progress requires a new idea: The bond angle might not be the simplest
variable to study. An analogous difficulty arises when conjecturing the
next term in the series 3, 5, 11, 29, . . .

What is the next term in the series?

At first glance, the numbers seems almost random. Yet subtracting 2 from
each term produces 1, 3, 9, 27, . . . Thus, in the original series the next
term is likely to be 83. Similarly, a simple transformation of the θd data
might help us conjecture a pattern for θd.

What transformation of the θd data produces simple patterns?

The desired transformation should produce simple patterns and have aes-
thetic or logical justification. One justification is the structure of an honest
calculation of the bond angle, which can be computed as a dot product
of two C–H vectors (Problem 6.3). Because dot products involve cosines,
a worthwhile transformation of θd is cos θd.

d θd cos θd

1 180◦ −1

2 120 −1/2

3 ? ?

This transformation simplifies the data: The cos θd
series begins simply −1, −1/2, . . . Two plausible
continuations are −1/4 or −1/3; they correspond,
respectively, to the general term −1/2d−1 or −1/d.

Which continuation and conjecture is the more plausible?

Both conjectures predict cos θ < 0 and therefore θd > 90◦ (for all d). This
shared prediction is encouraging (Problem 6.1); however, being shared
means that it does not distinguish between the conjectures.

HH
CC

HH1 1Does either conjecture match the molecular geometry?
An important geometric feature, apart from the bond
angle, is the position of the carbon. In one dimension, it lies halfway
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between the two hydrogens, so it splits the H–H line segment into two
pieces having a 1 :1 length ratio.

HH HH

HH

CC
1

2

In two dimensions, the carbon lies on the altitude that
connects one hydrogen to the midpoint of the other
two hydrogens. The carbon splits the altitude into two
pieces having a 1 :2 length ratio.

How does the carbon split the analogous altitude of methane?

CC

In methane, the analogous altitude runs from the top
vertex to the center of the base. The carbon lies at the
mean position and therefore at the mean height of the
four hydrogens. Because the three base hydrogens have
zero height, the mean height of the four hydrogens is
h/4, where h is the height of the top hydrogen. Thus,
in three dimensions, the carbon splits the altitude into
two parts having a length ratio of h/4 : 3h/4 or 1 : 3. In d dimensions,
therefore, the carbon probably splits the altitude into two parts having a
length ratio of 1 :d (Problem 6.2).

109.47◦

Because 1 : d arises naturally in the geometry, cos θd is
more likely to contain 1/d rather than 1/2d−1. Thus, the
more likely of the two cos θd conjectures is that

cos θd = −
1

d
. (6.1)

For methane, where d = 3, the predicted bond angle is
arccos(−1/3) or approximately 109.47◦. This prediction using reasoning
by analogy agrees with experiment and with an honest calculation using
analytic geometry (Problem 6.3).

Problem 6.2 Carbon’s position in higher dimensions
Justify conjecture that the carbon splits the altitude into two pieces having a
length ratio 1 :d.

Problem 6.3 Analytic-geometry solution
In order to check the solution using analogy, use analytic geometry as follows to
find the bond angle. First, assign coordinates (xn, yn, zn) to the n hydrogens,
where n = 1 . . . 4, and solve for those coordinates. (Use symmetry to make the
coordinates as simple as you can.) Then choose two C–H vectors and compute
the angle that they subtend.
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Problem 6.4 Extreme case of high dimensionality
Draw a picture to explain the small-angle approximation arccos x ≈ π/2 − x.
What is the approximate bond angle in high dimensions (large d)? Can you find
an intuitive explanation for the approximate bond angle?

6.2 Topology: How many regions?

The bond angle in methane (Section 6.1) can be calculated directly with
analytic geometry (Problem 6.3), so reasoning by analogy does not show
its full power. Therefore, try the following problem.

Into how many regions do five planes divide space?

This formulation permits degenerate arrangements such as five parallel
planes, four planes meeting at a point, or three planes meeting at a line. To
eliminate these and other degeneracies, let’s place and orient the planes
randomly, thereby maximizing the number of regions. The problem is
then to find the maximum number of regions produced by five planes.
Five planes are hard to imagine, but the method of easy
cases—using fewer planes—might produce a pattern
that generalizes to five planes. The easiest case is zero
planes: Space remains whole so R(0) = 1 (where R(n)

denotes the number of regions produced by n planes).
The first plane divides space into two halves, giving
R(1) = 2. To add the second plane, imagine slicing an
orange twice to produce four wedges: R(2) = 4.

What pattern(s) appear in the data?

A reasonable conjecture is that R(n) = 2n. To test it, try
the case n = 3 by slicing the orange a third time and
cutting each of the four pieces into two smaller pieces;
thus, R(3) is indeed 8. Perhaps the pattern continues
with R(4) = 16 and R(5) = 32. In the following table
for R(n), these two extrapolations are marked in gray to
distinguish them from the verified entries.

n 0 1 2 3 4 5

R 1 2 4 8 16 32
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How can the R(n) = 2n conjecture be tested further?

A direct test by counting regions is difficult because the regions are hard
to visualize in three dimensions. An analogous two-dimensional prob-
lem would be easier to solve, and its solution may help test the three-
dimensional conjecture. A two-dimensional space is partitioned by lines,
so the analogous question is the following:

What is the maximum number of regions into which n lines divide the plane?

The method of easy cases might suggest a pattern. If the pattern is 2n,
then the R(n) = 2n conjecture is likely to apply in three dimensions.

What happens in a few easy cases?

Zero lines leave the plane whole, giving R(0) = 1. The next three cases
are as follows (although see Problem 6.5):

R(1)=2 R(2)=4 R(3)=7

Problem 6.5 Three lines again
The R(3) = 7 illustration showed three lines producing seven regions.
Here is another example with three lines, also in a random arrange-
ment, but it seems to produce only six regions. Where, if anywhere,
is the seventh region? Or is R(3) = 6?

Problem 6.6 Convexity
Must all the regions created by the lines be convex? (A region is convex if and
only if a line segment connecting any two points inside the region lies entirely
inside the region.) What about the three-dimensional regions created by placing
planes in space?

Until R(3) turned out to be 7, the conjecture R(n) = 2n looked
sound. However, before discarding such a simple conjecture,
draw a fourth line and carefully count the regions. Four lines
make only 11 regions rather than the predicted 16, so the 2n

conjecture is dead.
A new conjecture might arise from seeing the two-dimensional data R2(n)

alongside the three-dimensional data R3(n).
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n 0 1 2 3 4

R2 1 2 4 7 11

R3 1 2 4 8

In this table, several entries combine to make nearby entries. For example,
R2(1) and R3(1)—the two entries in the n = 1 column—sum to R2(2) or
R3(2). These two entries in turn sum to the R3(3) entry. But the table
has many small numbers with many ways to combine them; discarding
the coincidences requires gathering further data—and the simplest data
source is the analogous one-dimensional problem.

What is the maximum number of segments into which n points divide a line?

A tempting answer is that n points make n segments. However, an easy
case—that one point produces two segments—reduces the temptation.
Rather, n points make n + 1 segments. That result generates the R1 row
in the following table.

n 0 1 2 3 4 5 n

R1 1 2 3 4 5 6 n+ 1

R2 1 2 4 7 11

R3 1 2 4 8

What patterns are in these data?

The 2n conjecture survives partially. In the R1 row, it fails starting at
n = 2. In the R2 row, it fails starting at n = 3. Thus in the R3 row, it
probably fails starting at n = 4, making the conjectures R3(4) = 16 and
R3(5) = 32 improbable. My personal estimate is that, before seeing these
failures, the probability of the R3(4) = 16 conjecture was 0.5; but now it
falls to at most 0.01. (For more on estimating and updating the proba-
bilities of conjectures, see the important works on plausible reasoning by
Corfield [11], Jaynes [21], and Polya [36].)
In better news, the apparent coincidences contain a robust pattern:

n 0 1 2 3 4 5 n

R1 1 2 3 4 5 6 n+ 1

R2 1 2 4 7 11
R3 1 2 4 8
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If the pattern continues, into how many regions can five planes divide space?

According to the pattern,

R3(4) = R2(3)︸ ︷︷ ︸
7

+R3(3)︸ ︷︷ ︸
8

= 15 (6.2)

and then

R3(5) = R2(4)︸ ︷︷ ︸
11

+R3(4)︸ ︷︷ ︸
15

= 26. (6.3)

Thus, five planes can divide space into a maximum of 26 regions.

This number is hard to deduce by drawing five planes and counting the
regions. Furthermore, that brute-force approach would give the value of
only R3(5), whereas easy cases and analogy give a method to compute
any entry in the table. They thereby provide enough data to conjecture
expressions for R2(n) (Problem 6.9), for R3(n) (Problem 6.10), and for the
general entry Rd(n) (Problem 6.12).

Problem 6.7 Checking the pattern in two dimensions
The conjectured pattern predicts R2(5) = 16: that five lines can divide the plane
into 16 regions. Check the conjecture by drawing five lines and counting the
regions.

Problem 6.8 Free data from zero dimensions
Because the one-dimensional problem gave useful data, try the zero-dimensional
problem. Extend the pattern for the R3, R2, and R1 rows upward to construct
an R0 row. It gives the number of zero-dimensional regions (points) produced
by partitioning a point with n objects (of dimension −1). What is R0 if the row
is to follow the observed pattern? Is that result consistent with the geometric
meaning of trying to subdivide a point?

Problem 6.9 General result in two dimensions
The R0 data fits R0(n) = 1 (Problem 6.8), which is a zeroth-degree polynomial.
The R1 data fits R1(n) = n + 1, which is a first-degree polynomial. Therefore,
the R2 data probably fits a quadratic.

Test this conjecture by fitting the data for n = 0 . . . 2 to the general quadratic
An2 + Bn+ C, repeatedly taking out the big part (Chapter 5) as follows.

a. Guess a reasonable value for the quadratic coefficient A. Then take out (sub-
tract) the big part An2 and tabulate the leftover, R2(n)−An2, for n = 0 . . . 2.
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If the leftover is not linear in n, then a quadratic term remains or too much
was removed. In either case, adjust A.

b. Once the quadratic coefficient A is correct, use an analogous procedure to
find the linear coefficient B.

c. Similarly solve for the constant coefficient C.
d. Check your quadratic fit against new data (R2(n) for n � 3).

Problem 6.10 General result in three dimensions
A reasonable conjecture is that the R3 row matches a cubic (Problem 6.9). Use
taking out the big part to fit a cubic to the n = 0 . . . 3 data. Does it produce the
conjectured values R3(4) = 15 and R3(5) = 26?

Problem 6.11 Geometric explanation
Find a geometric explanation for the observed pattern. Hint: Explain first why
the pattern generates the R2 row from the R1 row; then generalize the reason to
explain the R3 row.

Problem 6.12 General solution in arbitrary dimension
The pattern connecting neighboring entries of the Rd(n) table is the pattern
that generates Pascal’s triangle [17]. Because Pascal’s triangle produces binomial
coefficients, the general expression Rd(n) should contain binomial coefficients.
Therefore, use binomial coefficients to express R0(n) (Problem 6.8), R1(n), and
R2(n) (Problem 6.9). Then conjecture a binomial-coefficient form for R3(n) and
Rd(n), checking the result against Problem 6.10.

Problem 6.13 Power-of-2 conjecture
Our first conjecture for the number of regions was Rd(n) = 2n. In three dimen-
sions, it worked until n = 4. In d dimensions, show that Rd(n) = 2n for n � d

(perhaps using the results of Problem 6.12).

6.3 Operators: Euler–MacLaurin summation

The next analogy studies unusual functions. Most functions turn numbers
into other numbers, but special kinds of functions—operators—turn func-
tions into other functions. A familiar example is the derivative operator
D. It turns the sine function into the cosine function, or the hyperbolic
sine function into the hyperbolic cosine function. In operator notation,
D(sin) = cos and D(sinh) = cosh; omitting the parentheses gives the
less cluttered expression Dsin = cos and Dsinh = cosh. To understand
and learn how to use operators, a fruitful tool is reasoning by analogy:
Operators behave much like ordinary functions or even like numbers.
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6.3.1 Left shift

Like a number, the derivative operator D can be squared to make D2 (the
second-derivative operator) or to make any integer power of D. Similarly,
the derivative operator can be fed to a polynomial. In that usage, an
ordinary polynomial such as P(x) = x2 + x/10 + 1 produces the operator
polynomial P(D) = D2 +D/10 + 1 (the differential operator for a lightly
damped spring–mass system).

How far does the analogy to numbers extend? For example, do coshD

or sinD have a meaning? Because these functions can be written using
the exponential function, let’s investigate the operator exponential eD.

What does eD mean?

The direct interpretation of eD is that it turns a function f into eDf.

D expf eDf
Df

However, this interpretation is needlessly nonlinear. It turns 2f into e2Df,
which is the square of eDf, whereas a linear operator that produces eDf

from f would produce 2eDf from 2f. To get a linear interpretation, use a
Taylor series—as if D were a number—to build eD out of linear operators.

eD = 1+D+
1

2
D2 +

1

6
D3 + · · · . (6.4)

What does this eD do to simple functions?

The simplest nonzero function is the constant function f = 1. Here is that
function being fed to eD:

(1+D+ · · ·)︸ ︷︷ ︸
eD

1︸︷︷︸
f

= 1. (6.5)

The next simplest function x turns into x+ 1.(
1+D+

D2

2
+ · · ·
)
x = x+ 1. (6.6)

More interestingly, x2 turns into (x+ 1)2.(
1+D+

D2

2
+

D3

6
· · ·
)
x2 = x2 + 2x+ 1 = (x+ 1)2. (6.7)
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Problem 6.14 Continue the pattern
What is eDx3 and, in general, eDxn?

What does eD do in general?

The preceding examples follow the pattern eDxn = (x+1)n. Because most
functions of x can be expanded in powers of x, and eD turns each xn term
into (x+1)n, the conclusion is that eD turns f(x) into f(x+1). Amazingly,
eD is simply L, the left-shift operator.

Problem 6.15 Right or left shift
Draw a graph to show that f(x) → f(x + 1) is a left rather than a right shift.
Apply e−D to a few simple functions to characterize its behavior.

Problem 6.16 Operating on a harder function
Apply the Taylor expansion for eD to sin x to show that eD sin x = sin(x+ 1).

Problem 6.17 General shift operator
If x has dimensions, then the derivative operator D = d/dx is not dimensionless,
and eD is an illegal expression. To make the general expression eaD legal, what
must the dimensions of a be? What does eaD do?

6.3.2 Summation

Just as the derivative operator can represent the left-shift operator (as L =

eD), the left-shift operator can represent the operation of summation. This
operator representation will lead to a powerful method for approximating
sums with no closed form.
Summation is analogous to the more familiar operation of integration.
Integration occurs in definite and indefinite flavors: Definite integration
is equivalent to indefinite integration followed by evaluation at the limits
of integration. As an example, here is the definite integration of f(x) = 2x.

∣∣∣b
a

∫
b2 −a22x

x2 +C

integration limits

In general, the connection between an input function g and the result of
indefinite integration is DG = g, where D is the derivative operator and
G =

∫
g is the result of indefinite integration. Thus D and

∫
are inverses
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of one another—D
∫
= 1 or D = 1/

∫
—a connection represented by the

loop in the diagram. (
∫
D = 1 because of a possible integration constant.)

∣∣∣b
a

∫

D

G(b) −G(a)g
G

What is the analogous picture for summation?

f(k)

k

f(2)

2

f(3)

3

f(4)

4 5

Analogously to integration, define definite
summation as indefinite summation and
then evaluation at the limits. But apply the
analogy with care to avoid an off-by-one or
fencepost error (Problem 2.24). The sum∑4

2 f(k) includes three rectangles—f(2), f(3), and f(4)—whereas the defi-
nite integral

∫4
2
f(k)dk does not include any of the f(4) rectangle. Rather

than rectifying the discrepancy by redefining the familiar operation of
integration, interpret indefinite summation to exclude the last rectangle.
Then indefinite summation followed by evaluating at the limits a and b

produces a sum whose index ranges from a to b− 1.

As an example, take f(k) = k. Then the indefinite sum
∑

f is the function
F defined by F(k) = k(k−1)/2+C (where C is the constant of summation).
Evaluating F between 0 and n gives n(n − 1)/2, which is

∑n−1
0 k. In the

following diagram, these steps are the forward path.
∣∣∣b
a

∑

Δ

F(b) − F(a) =

b−1∑
k=a

f(k)f
F

Δ

In the reverse path, the new Δ operator inverts Σ just as differentiation
inverts integration. Therefore, an operator representation for Δ provides
one for Σ. Because Δ and the derivative operator D are analogous, their
representations are probably analogous. A derivative is the limit

df

dx
= lim

h→0

f(x+ h) − f(x)

h
. (6.8)
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The derivative operator D is therefore the operator limit

D = lim
h→0

Lh − 1

h
, (6.9)

where the Lh operator turns f(x) into f(x+h)—that is, Lh left shifts by h.

Problem 6.18 Operator limit
Explain why Lh ≈ 1+ hD for small h. Show therefore that L = eD.

What is an analogous representation of Δ?

The operator limit for D uses an infinitesimal left shift; correspondingly,
the inverse operation of integration sums rectangles of infinitesimal width.
Because summation Σ sums rectangles of unit width, its inverse Δ should
use a unit left shift—namely, Lh with h = 1. As a reasonable conjecture,

Δ = lim
h→1

Lh − 1

h
= L− 1. (6.10)

This Δ—called the finite-difference operator—is constructed to be 1/Σ. If
the construction is correct, then (L − 1)Σ is the identity operator 1. In
other words, (L− 1)Σ should turn functions into themselves.

How well does this conjecture work in various easy cases?

To test the conjecture, apply the operator (L−1)Σ first to the easy function
g = 1. Then Σg is a function waiting to be fed an argument, and (Σg)(k)

is the result of feeding it k. With that notation, (Σg)(k) = k+C. Feeding
this function to the L− 1 operator reproduces g.[

(L− 1)Σg
]
(k) = (k+ 1+ C)︸ ︷︷ ︸

(LΣg)(k)

− (k+ C)︸ ︷︷ ︸
(1Σg)(k)

= 1︸︷︷︸
g(k)

. (6.11)

With the next-easiest function—defined by g(k) = k—the indefinite sum
(Σg)(k) is k(k− 1)/2+ C. Passing Σg through L− 1 again reproduces g.
[
(L− 1)Σg

]
(k) =

(
(k+ 1)k

2
+ C

)
︸ ︷︷ ︸

(LΣg)(k)

−

(
k(k− 1)

2
+ C

)
︸ ︷︷ ︸

(1Σg)(k)

= k︸︷︷︸
g(k)

. (6.12)

In summary, for the test functions g(k) = 1 and g(k) = k, the operator
product (L− 1)Σ takes g back to itself, so it acts like the identity operator.
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This behavior is general—(L−1)Σ1 is indeed 1, and Σ = 1/(L−1). Because
L = eD, we have Σ = 1/(eD − 1). Expanding the right side in a Taylor
series gives an amazing representation of the summation operator.∑

=
1

eD − 1
=

1

D
−

1

2
+

D

12
−

D3

720
+

D5

30240
− · · · . (6.13)

Because D
∫
= 1, the leading term 1/D is integration. Thus, summation

is approximately integration—a plausible conclusion indicating that the
operator representation is not nonsense.

Applying this operator series to a function f and then evaluating at the
limits a and b produces the Euler–MacLaurin summation formula

b−1∑
a

f(k) =

∫b
a

f(k)dk−
f(b) − f(a)

2
+

f(1)(b) − f(1)(a)

12

−
f(3)(b) − f(3)(a)

720
+

f(5)(b) − f(5)(a)

30240
− · · · ,

(6.14)

where f(n) indicates the nth derivative of f.

The sum lacks the usual final term f(b). Including this term gives the
useful alternative

b∑
a

f(k) =

∫b
a

f(k)dk+
f(b) + f(a)

2
+

f(1)(b) − f(1)(a)

12

−
f(3)(b) − f(3)(a)

720
+

f(5)(b) − f(5)(a)

30240
− · · · .

(6.15)

As a check, try an easy case:
∑n

0 k. Using Euler–MacLaurin summation,
f(k) = k, a = 0, and b = n. The integral term then contributes n2/2;
the constant term

[
f(b) + f(a)

]/
2 contributes n/2; and later terms vanish.

The result is familiar and correct:
n∑
0

k =
n2

2
+

n

2
+ 0 =

n(n+ 1)

2
. (6.16)

A more stringent test of Euler–MacLaurin summation is to approximate
lnn!, which is the sum

∑n
1 ln k (Section 4.5). Therefore, sum f(k) = ln k

between the (inclusive) limits a = 1 and b = n. The result is
n∑
1

ln k =

∫n
1

ln kdk+
lnn

2
+ · · · . (6.17)
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lnk

1 · · · n
k

The integral, from the 1/D operator, contributes
the area under the ln k curve. The correction,
from the 1/2 operator, incorporates the triangular
protrusions (Problem 6.20). The ellipsis includes
the higher-order corrections (Problem 6.21)—hard
to evaluate using pictures (Problem 4.32) but sim-
ple using Euler–MacLaurin summation (Problem 6.21).

Problem 6.19 Integer sums
Use Euler–MacLaurin summation to find closed forms for the following sums:

(a)
n∑
0

k2 (b)
n∑
0

(2k+ 1) (c)
n∑
0

k3.

Problem 6.20 Boundary cases
In Euler–MacLaurin summation, the constant term is

[
f(b) + f(a)

]/
2—one-half

of the first term plus one-half of the last term. The picture for summing ln k

(Section 4.5) showed that the protrusions are approximately one-half of the last
term, namely lnn. What, pictorially, happened to one-half of the first term?

Problem 6.21 Higher-order terms
Approximate ln 5! using Euler–MacLaurin summation.

Problem 6.22 Basel sum

The Basel sum
∞∑
1

n−2 may be approximated with pictures (Problem 4.37).

However, the approximation is too crude to help guess the closed form. As
Euler did, use Euler–MacLaurin summation to improve the accuracy until you
can confidently guess the closed form. Hint: Sum the first few terms explicitly.

6.4 Tangent roots: A daunting transcendental sum

Our farewell example, chosen because its analysis combines diverse street-
fighting tools, is a difficult infinite sum.

Find S ≡
∑

x−2
n where the xn are the positive solutions of tan x = x.

The solutions to tan x = x or, equivalently, the roots of tan x − x, are
transcendental and have no closed form, yet a closed form is required for
almost every summation method. Street-fighting methods will come to
our rescue.
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6.4.1 Pictures and easy cases

Begin the analysis with a hopefully easy case.

What is the first root x1?

y = x

π
2

3π
2

11

5π
2

22

7π
2

33

x

The roots of tan x−x are given by the
intersections of y = x and y = tan x.
Surprisingly, no intersection occurs in
the branch of tan x where 0 < x < π/2

(Problem 6.23); the first intersection is
just before the asymptote at x = 3π/2.
Thus, x1 ≈ 3π/2.

Problem 6.23 No intersection with the main branch
Show symbolically that tan x = x has no solution for 0 < x < π/2. (The result
looks plausible pictorially but is worth checking in order to draw the picture.)

Where, approximately, are the subsequent intersections?

As x grows, the y = x line intersects the y = tan x graph ever higher
and therefore ever closer to the vertical asymptotes. Therefore, make the
following asymptote approximation for the big part of xn:

xn ≈
(
n+

1

2

)
π. (6.18)

6.4.2 Taking out the big part

This approximate, low-entropy expression for xn gives the big part of S

(the zeroth approximation).

S ≈
∑[(

n+
1

2

)
π︸ ︷︷ ︸

≈xn

]−2

=
4

π2

∞∑
1

1

(2n+ 1)2
. (6.19)

The sum
∑∞

1 (2n + 1)−2 is, from a picture (Section 4.5) or from Euler–
MacLaurin summation (Section 6.3.2), roughly the following integral.

∞∑
1

(2n+ 1)−2 ≈
∫∞
1

(2n+ 1)−2 dn = −
1

2
× 1

2n+ 1

∣∣∣∣
∞

1

=
1

6
. (6.20)
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Therefore,

S ≈ 4

π2
× 1

6
= 0.067547 . . . (6.21)

(2k+ 1)−2

1 2 3 4
k

The shaded protrusions are roughly triangles,
and they sum to one-half of the first rectangle.
That rectangle has area 1/9, so

∞∑
1

(2n+ 1)−2 ≈ 1

6
+

1

2
× 1

9
=

2

9
. (6.22)

Therefore, a more accurate estimate of S is

S ≈ 4

π2
× 2

9
= 0.090063 . . . , (6.23)

which is slightly higher than the first estimate.

Is the new approximation an overestimate or an underestimate?

The new approximation is based on two underestimates. First, the asymp-
tote approximation xn ≈ (n + 0.5)π overestimates each xn and therefore
underestimates the squared reciprocals in the sum

∑
x−2
n . Second, after

making the asymptote approximation, the pictorial approximation to the
sum

∑∞
1 (2n + 1)−2 replaces each protrusion with an inscribed triangle

and thereby underestimates each protrusion (Problem 6.24).

Problem 6.24 Picture for the second underestimate
Draw a picture of the underestimate in the pictorial approximation

∞∑
1

1

(2n+ 1)2
≈ 1

6
+

1

2
× 1

9
. (6.24)

How can these two underestimates be remedied?

The second underestimate (the protrusions) is eliminated by summing∑∞
1 (2n+ 1)−2 exactly. The sum is unfamiliar partly because its first term

is the fraction 1/9—whose arbitrariness increases the entropy of the sum.
Including the n = 0 term, which is 1, and the even squared reciprocals
1/(2n)2 produces a compact and familiar lower-entropy sum.

∞∑
1

1

(2n+ 1)2
+ 1 +

∞∑
1

1

(2n)2
=

∞∑
1

1

n2
. (6.25)
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The final, low-entropy sum is the famous Basel sum (high-entropy results
are not often famous). Its value is B = π2/6 (Problem 6.22).

How does knowing B = π2/6 help evaluate the original sum
∑∞

1 (2n+ 1)−2?

The major modification from the original sum was to include the even
squared reciprocals. Their sum is B/4.

∞∑
1

1

(2n)2
=

1

4

∞∑
1

1

n2
. (6.26)

The second modification was to include the n = 0 term. Thus, to obtain∑∞
1 (2n + 1)−2, adjust the Basel value B by subtracting B/4 and then the

n = 0 term. The result, after substituting B = π2/6, is
∞∑
1

1

(2n+ 1)2
= B−

1

4
B− 1 =

π2

8
− 1. (6.27)

This exact sum, based on the asymptote approximation for xn, produces
the following estimate of S.

S ≈ 4

π2

∞∑
1

1

(2n+ 1)2
=

4

π2

(
π2

8
− 1

)
. (6.28)

Simplifying by expanding the product gives

S ≈ 1

2
−

4

π2
= 0.094715 . . . (6.29)

Problem 6.25 Check the earlier reasoning
Check the earlier pictorial reasoning (Problem 6.24) that 1/6 + 1/18 = 2/9

underestimates
∑∞

1 (2n+ 1)−2. How accurate was that estimate?

This estimate of S is the third that uses the asymptote approximation
xn ≈ (n+ 0.5)π. Assembled together, the estimates are

S ≈
⎧⎨
⎩

0.067547 (integral approximation to
∑∞

1 (2n+ 1)−2),
0.090063 (integral approximation and triangular overshoots),
0.094715 (exact sum of

∑∞
1 (2n+ 1)−2).

Because the third estimate incorporated the exact value of
∑∞

1 (2n+ 1)−2,
any remaining error in the estimate of S must belong to the asymptote
approximation itself.
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For which term of
∑

x−2
n is the asymptote approximation most inaccurate?

As x grows, the graphs of x and tan x intersect ever closer to the vertical
asymptote. Thus, the asymptote approximation makes its largest absolute
error when n = 1. Because x1 is the smallest root, the fractional error
in xn is, relative to the absolute error in xn, even more concentrated at
n = 1. The fractional error in x−2

n , being −2 times the fractional error
in xn (Section 5.3), is equally concentrated at n = 1. Because x−2

n is the
largest at n = 1, the absolute error in x−2

n (the fractional error times x−2
n

itself) is, by far, the largest at n = 1.

Problem 6.26 Absolute error in the early terms
Estimate, as a function of n, the absolute error in x−2

n that is produced by the
asymptote approximation.

With the error so concentrated at n = 1, the greatest improvement in the
estimate of S comes from replacing the approximation x1 = (n + 0.5)π

with a more accurate value. A simple numerical approach is successive
approximation using the Newton–Raphson method (Problem 4.38). To
find a root with this method, make a starting guess x and repeatedly
improve it using the replacement

x −→ x−
tan x− x

sec2 x− 1
. (6.30)

When the starting guess for x is slightly below the first asymptote at 1.5π,
the procedure rapidly converges to x1 = 4.4934 . . .

Therefore, to improve the estimate S ≈ 0.094715, which was based on the
asymptote approximation, subtract its approximate first term (its big part)
and add the corrected first term.

S ≈ Sold −
1

(1.5π)2
+

1

4.49342
≈ 0.09921. (6.31)

Using the Newton–Raphson method to refine, in addition, the 1/x22 term
gives S ≈ 0.09978 (Problem 6.27). Therefore, a highly educated guess is

S =
1

10
. (6.32)

The infinite sum of unknown transcendental numbers seems to be neither
transcendental nor irrational! This simple and surprising rational number
deserves a simple explanation.
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Problem 6.27 Continuing the corrections
Choose a small N, say 4. Then use the Newton–Raphson method to compute
accurate values of xn for n = 1 . . .N; and use those values to refine the estimate
of S. As you extend the computation to larger values of N, do the refined
estimates of S approach our educated guess of 1/10?

6.4.3 Analogy with polynomials

If only the equation tan x − x = 0 had just a few closed-form solutions!
Then the sum S would be easy to compute. That wish is fulfilled by
replacing tan x − x with a polynomial equation with simple roots. The
simplest interesting polynomial is the quadratic, so experiment with a
simple quadratic—for example, x2 − 3x+ 2.

This polynomial has two roots, x1 = 1 and x2 = 2; therefore
∑

x−2
n , the

polynomial-root sum analog of the tangent-root sum, has two terms.∑
x−2
n =

1

12
+

1

22
=

5

4
. (6.33)

This brute-force method for computing the root sum requires a solution
to the quadratic equation. However, a method that can transfer to the
equation tan x − x = 0, which has no closed-form solution, cannot use
the roots themselves. It must use only surface features of the quadratic—
namely, its two coefficients 2 and −3. Unfortunately, no plausible method
of combining 2 and −3 predicts that

∑
x−2
n = 5/4.

Where did the polynomial analogy go wrong?

The problem is that the quadratic x2 − 3x+ 2 is not sufficiently similar to
tan x − x. The quadratic has only positive roots; however, tan x − x, an
odd function, has symmetric positive and negative roots and has a root
at x = 0. Indeed, the Taylor series for tan x is x + x3/3 + 2x5/15 + · · ·
(Problem 6.28); therefore,

tan x− x =
x3

3
+

2x5

15
+ · · · . (6.34)

The common factor of x3 means that tan x − x has a triple root at x = 0.
An analogous polynomial—here, one with a triple root at x = 0, a positive
root, and a symmetric negative root—is (x+2)x3(x−2) or, after expansion,
x5 − 4x3. The sum

∑
x−2
n (using the positive root) contains only one term
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and is simply 1/4. This value could plausibly arise as the (negative) ratio
of the last two coefficients of the polynomial.
To decide whether that pattern is a coincidence, try a richer polynomial:
one with roots at −2, −1, 0 (threefold), 1, and 2. One such polynomial is

(x+ 2)(x+ 1)x3(x− 1)(x− 2) = x7 − 5x5 + 4x3. (6.35)

The polynomial-root sum uses only the two positive roots 1 and 2 and is
1/12 + 1/22, which is 5/4—the (negative) ratio of the last two coefficients.
As a final test of this pattern, include −3 and 3 among the roots. The
resulting polynomial is

(x7 − 5x5 + 4x3)(x+ 3)(x− 3) = x9 − 14x7 + 49x5 − 36x3. (6.36)

The polynomial-root sum uses the three positive roots 1, 2, and 3 and is
1/12 + 1/22 + 1/32, which is 49/36—again the (negative) ratio of the last
two coefficients in the expanded polynomial.

What is the origin of the pattern, and how can it be extended to tan x− x?

To explain the pattern, tidy the polynomial as follows:

x9 − 14x7 + 49x5 − 36x3 = −36x3
(
1−

49

36
x2 +

14

36
x4 −

1

36
x6
)
. (6.37)

In this arrangement, the sum 49/36 appears as the negative of the first
interesting coefficient. Let’s generalize. Placing k roots at x = 0 and single
roots at ±x1, ±x2, . . ., ±xn gives the polynomial

Axk
(
1−

x2

x21

)(
1−

x2

x22

)(
1−

x2

x23

)
· · ·
(
1−

x2

x2n

)
, (6.38)

where A is a constant. When expanding the product of the factors in
parentheses, the coefficient of the x2 term in the expansion receives one
contribution from each x2/x2k term in a factor. Thus, the expansion begins

Axk
[
1−

(
1

x21
+

1

x22
+

1

x23
+ · · ·+ 1

x2n

)
x2 + · · ·

]
. (6.39)

The coefficient of x2 in parentheses is
∑

x−2
n , which is the polynomial

analog of the tangent-root sum.
Let’s apply this method to tan x− x. Although it is not a polynomial, its
Taylor series is like an infinite-degree polynomial. The Taylor series is
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x3

3
+

2x5

15
+

17x7

315
+ · · · = x3

3

(
1+

2

5
x2 +

17

105
x4 + · · ·

)
. (6.40)

The negative of the x2 coefficient should be −
∑

x−2
n . For the tangent-

sum problem,
∑

x−2
n should therefore be −2/5. Unfortunately, the sum

of positive quantities cannot be negative!

What went wrong with the analogy?

One problem is that tan x − x might have imaginary or complex roots
whose squares contribute negative amounts to S. Fortunately, all its roots
are real (Problem 6.29). A harder-to-solve problem is that tan x− x goes
to infinity at finite values of x, and does so infinitely often, whereas no
polynomial does so even once.

sinx− xcosx

0
x1

x2

x3

The solution is to construct a function having no
infinities but having the same roots as tan x−x. The
infinities of tan x − x occur where tan x blows up,
which is where cos x = 0. To remove the infinities
without creating or destroying any roots, multiply
tan x− x by cos x. The polynomial-like function to
expand is therefore sin x− x cos x.

Its Taylor expansion is(
x−

x3

6
+

x5

120
− · · ·
)

︸ ︷︷ ︸
sin x

−

(
x−

x3

2
+

x5

24
− · · ·
)

︸ ︷︷ ︸
x cos x

. (6.41)

The difference of the two series is

sin x− x cos x =
x3

3

(
1−

1

10
x2 + · · ·

)
. (6.42)

The x3/3 factor indicates the triple root at x = 0. And there at last, as the
negative of the x2 coefficient, sits our tangent-root sum S = 1/10.

Problem 6.28 Taylor series for the tangent
Use the Taylor series for sin x and cos x to show that

tan x = x+
x3

3
+

2x5

15
+ · · · . (6.43)

Hint: Use taking out the big part.
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Problem 6.29 Only real roots
Show that all roots of tan x− x are real.

Problem 6.30 Exact Basel sum
Use the polynomial analogy to evaluate the Basel sum

∞∑
1

1

n2
. (6.44)

Compare your result with your solution to Problem 6.22.

Problem 6.31 Misleading alternative expansions
Squaring and taking the reciprocal of tan x = x gives cot2 x = x−2; equivalently,
cot2 x−x−2 = 0. Therefore, if x is a root of tan x−x, it is a root of cot2 x−x−2.
The Taylor expansion of cot2 x− x−2 is

−
2

3

(
1−

1

10
x2 −

1

63
x4 − · · ·

)
. (6.45)

Because the coefficient of x2 is −1/10, the tangent-root sum S—for cot x = x−2

and therefore tan x = x—should be 1/10. As we found experimentally and
analytically for tan x = x, the conclusion is correct. However, what is wrong
with the reasoning?

Problem 6.32 Fourth powers of the reciprocals
The Taylor series for sin x− x cos x continues

x3

3

(
1−

x2

10
+

x4

280
− · · ·
)
. (6.46)

Therefore find
∑

x−4
n for the positive roots of tan x = x. Check numerically

that your result is plausible.

Problem 6.33 Other source equations for the roots
Find

∑
x−2
n , where the xn are the positive roots of cos x.

6.5 Bon voyage

I hope that you have enjoyed incorporating street-fighting methods into
your problem-solving toolbox. May you find diverse opportunities to use
dimensional analysis, easy cases, lumping, pictorial reasoning, taking out
the big part, and analogy. As you apply the tools, you will sharpen
them—and even build new tools.
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An italic page number refers to a problem on that page.

ν

see kinematic viscosity
1 or few

see few
≈ (approximately equal) 6
π, computing

arctangent series 64
Brent–Salamin algorithm 65
∝ (proportional to) 6
∼ (twiddle) 6, 44
ω

see angular frequency

analogy, reasoning by 99–121
dividing space with planes 103–107
generating conjectures

see conjectures: generating
operators 107–113

left shift (L) 108–109
summation (Σ) 109

preserving crucial features 100, 118,
120

pyramid volume 19
spatial angles 99–103
tangent-root sum 118–121
testing conjectures

see conjectures: testing
to polynomials 118–121
transforming dependent variable 101

angles, spatial 99–103
angular frequency 44
Aristotle xiv
arithmetic–geometric mean 65

arithmetic-mean–geometric-mean in-
equality 60–66
applications 63–66

computing π 64–66
maxima 63–64

equality condition 62
numerical examples 60
pictorial proof 61–63
symbolic proof 61

arithmetic mean
see also geometric mean
picture for 62

asymptotes of tan x 114
atmospheric pressure 34

back-of-the-envelope estimates
correcting 78
mental multiplication in 77
minimal accuracy required for 78
powers of 10 in 78

balancing 41
Basel sum (

∑
n−2) 76, 113, 116, 121

beta function 98
big part, correcting the

see also taking out the big part
additive messier than multiplicative

corrections 80
using multiplicative corrections

see fractional changes
using one or few 78

big part, taking out
see taking out the big part
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binomial coefficients 96, 107
binomial distribution 98
binomial theorem 90, 97
bisecting a triangle 70–73
bits, CD capacity in 78
blackbody radiation 87
boundary layers 27
brain evolution 57
Buckingham, Edgar 26

calculus, fundamental idea of 31
CD-ROM

see also CD
same format as CD 77

CD/CD-ROM, storage capacity 77–79
characteristic magnitudes (typical magni-

tudes) 44
characteristic times 44
checking units 78
circle

area from circumference 76
as polygon with many sides 72

comparisons, nonsense with different
dimensions 2

cone free-fall distance 35
cone templates 21
conical pendulum 48
conjectures

discarding coincidences 105, 119
explaining 119
generating 100, 103, 104, 105
probabilities of 105
testing 100, 101, 104, 106, 111, 119

getting more data 100, 105, 106
constants of proportionality

Stefan–Boltzmann constant 11
constraint propagation 5
contradictions 20
convergence, accelerating 65, 68
convexity 104
copyright raising book prices 82
Corfield, David 105
cosine

integral of high power 94–97
small-angle approximation

derived 86

used 95
cube, bisecting 73

d (differential symbol) 10, 43
degeneracies 103
derivative as a ratio 38
derivatives

approximating with nonzero Δx 40
secant approximation 38

errors in 39
improved starting point 39
large error 38
vertical translation 39

second
dimensions of 38
secant approximation to 38

significant-change approximation
40–41
acceleration 43
Navier–Stokes derivatives 45
scale and translation invariance 40

translation invariance 40
desert-island method 32
differential equations

checking dimensions 42
linearizing 47, 51–54
orbital motion 12
pendulum 46
simplifying into algebraic equations

43–46
spring–mass system 42–45

exact solution 45
pendulum equation 47

dimensional analysis
see dimensions, method of; dimension-

less groups
dimensionless constants

Gaussian integral 10
simple harmonic motion 48
Stefan–Boltzmann law 11

dimensionless groups 24
drag 25
free-fall speed 24
pendulum period 48
spring–mass system 48



129

dimensionless quantities
depth of well 94
fractional change times exponent 89
have lower entropy 94
having lower entropy 81

dimensions
L for length 5
retaining 5
T for time 5
versus units 2

dimensions, method of 1–12
see also dimensionless groups
advantages 6
checking differential equations 42
choosing unspecified dimensions 7,

8–9
compared with easy cases 15
constraint propagation 5
drag 23–26
guessing integrals 7–11
Kepler’s third law 12
pendulum 48–49
related-rates problems 12
robust alternative to solving differen-

tial equations 5
Stefan–Boltzmann law 11

dimensions of
angles 47
d (differential) 10
dx 10
exponents 8
integrals 9
integration sign

∫
9

kinematic viscosity ν 22
pendulum equation 47
second derivative 38, 43
spring constant 43
summation sign Σ 9

drag 21–29
depth-of-well estimate, effect on 93
high Reynolds number 28
low Reynolds number 30
quantities affecting 23

drag force
see drag

e

in fractional changes 90
earth

surface area 79
surface temperature 87

easy cases 13–30
adding odd numbers 58
beta-function integral 98
bisecting a triangle 70
bond angles 100
checking formulas 13–17
compared with dimensions 15
ellipse area 16–17
ellipse perimeter 65
fewer lines 104
fewer planes 103
guessing integrals 13–16
high dimensionality 103
high Reynolds number 27
large exponents 89
low Reynolds number 30
of infinite sound speed 92, 94
pendulum

large amplitude 49–51
small amplitude 47–48

polynomials 118
pyramid volume 19
roots of tan x = x 114
simple functions 108, 112
synthesizing formulas 17
truncated cone 21
truncated pyramid 18–21

ellipse
area 17
perimeter 65

elliptical orbit
eccentricity 87
position of sun 87

energy conservation 50
energy consumption in driving 82–84

effect of longer commuting time 83
entropy of an expression

see low-entropy expressions
entropy of mixing 81
equality, kinds of 6
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estimating derivatives
see derivatives, secant approximation;
derivatives, significant-change approxi-
mation

Euler 113
see also Basel sum
beta function 98

Euler–MacLaurin summation 112
Evolving Brains 57
exact solution

invites algebra mistakes 4
examples

adding odd numbers 58–60
arithmetic-mean–geometric-mean in-

equality 60–66
babies, number of 32–33
bisecting a triangle 70–73
bond angle in methane 99–103
depth of a well 91–94
derivative of cos x, estimating 40–41
dividing space with planes 103–107
drag on falling paper cones 21–29
ellipse area 16–17
energy savings from 55mph speed

limit 82–84
factorial function 36–37
free fall 3–6
Gaussian integral using dimensions

7–11
Gaussian integral using easy cases

13–16
logarithm series 66–70
maximizing garden area 63–64
multiplying 3.15 by 7.21

using fractional changes 79–80
using one or few 79

operators
left shift (L) 108–109
summation (Σ) 109–113

pendulum period 46–54
power of multinationals 1–3
rapidly computing 1/13 84–85
seasonal temperature fluctuations

86–88
spring–mass differential equation

42–45

square root of ten 85–86
storage capacity of a CD-ROM or CD

77–79
summing lnn! 73–75
tangent-root sum 113–121
trigonometric integral 94–97
volume of truncated pyramid 17–21

exponential
decaying, integral of 33
outruns any polynomial 36

exponents, dimensions of 8
extreme cases

see easy cases

factorial
integral representation 36
Stirling’s formula

Euler–MacLaurin summation 112
lumping 36–37
pictures 74

summation representation 73
summing logarithm of 73–75

few
as geometric mean 78
as invented number 78
for mental multiplication 78

fractional changes
cube roots 86
cubing 83, 84
do not multiply 83
earth–sun distance 87
estimating wind power 84
exponent of −2 86
exponent of 1/4 87
general exponents 84–90
increasing accuracy 85, 86
introduced 79–80
large exponents 89–90, 95
linear approximation 82
multiplying 3.15 by 7.21 79
negative and fractional exponents

86–88
no plausible alternative to adding 82
picture 80
small changes add 82
square roots 85–86
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squaring 82–84
tangent-root sum 117

free fall
analysis using dimensions 3–6
depth of well 91–94
differential equation 4
impact speed (exact) 4
with initial velocity 30

fudging 33
fuel efficiency 85

Gaussian integral
closed form, guessing 14, 16
extending limits to ∞ 96
tail area 55
trapezoidal approximation 14
using dimensions 7–11
using easy cases 13–16
using lumping 34, 35

GDP, as monetary flow 1
geometric mean

see also arithmetic mean; arith-
metic-mean–geometric-mean theorem
definition 60
picture for 61
three numbers 63

gestalt understanding 59
globalization 1
graphical arguments

see pictorial proofs

high-entropy expressions
see also low-entropy expressions
from quadratic formula 92

How to Solve It xiii
Huygens 48

induction proof 58
information theory 81
integration

approximating as multiplication
see lumping

inverse of differentiation 109
numerical 14
operator 109

intensity of solar radiation 86

isoperimetric theorem 73

Jaynes, Edwin Thompson 105
Jeffreys, Harold 26

Kepler’s third law 25
kinematic viscosity (ν) 21, 27

Landau Institute, daunting trigonomet-
ric integral from 94

L (dimension of length) 5
Lennard–Jones potential 41
life expectancy 32
little bit (meaning of d) 10, 43
logarithms

analyzing fractional changes 90
integral definition 67
rational-function approximation 69

low-entropy expressions
basis of scientific progress 81
dimensionless quantities are often

81
fractional changes are often 81
from successive approximation 93
high-entropy intermediate steps 81
introduced 80–82
reducing mixing entropy 81
roots of tan x = x 114

lumping 31–55
1/e heuristic 34
atmospheric pressure 34
circumscribed rectangle 67
differential equations 51–54
estimating derivatives 37–41
inscribed rectangle 67
integrals 33–37
pendulum, moderate amplitudes 51
population estimates 32–33
too much 52

Mars Climate Orbiter, crash of 3
Mathematics and Plausible Reasoning xiii
mathematics, power of abstraction 7
maxima and minima 41, 70

arithmetic-mean–geometric-mean in-
equality 63–64
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box volume 64
trigonometry 64

mental division 33
mental multiplication

using one or few
see few

method versus trick 69
mixing entropy 81

Navier–Stokes equations
difficult to solve 22
inertial term 45
statement of 21
viscous term 46

Newton–Raphson method 76, 117, 118
numerical integration 14

odd numbers, sum of 58–60
one or few

if not accurate enough 79
operators

derivative (D) 107
exponential of 108

finite difference (Δ) 110
integration 109
left shift (L) 108–109
right shift 109
summation (Σ) 109–113

parabola, area without calculus 76
Pascal’s triangle 107
patterns, looking for 90
pendulum

differential equation 46
in weaker gravity 52
period of 46–54

perceptual abilities 58
pictorial proofs 57–76

adding odd numbers 58–60
area of circle 76
arithmetic-mean–geometric-mean in-

equality 60–63, 76
bisecting a triangle 70–73
compared to induction proof 58
dividing space with planes 107
factorial 73–75

logarithm series 66–70
Newton–Raphson method 76
roots of tan x = x 114
volume of sphere 76

pictorial reasoning
depth of well 94

plausible alternatives
see low-entropy expressions

Polya, George 105
population, estimating 32
power of multinationals 1–3
powers of ten 78
proportional reasoning 18
pyramid, truncated 17

quadratic formula 91
high entropy 92
versus successive approximation 93

quadratic terms
ignoring 80, 82, 84
including 85

range formula 30
rapid mental division 84–85
rational functions 69, 101
Re

see Reynolds number
related-rates problems 12
rewriting-as-a-ratio trick 68, 70, 86
Reynolds number (Re) 27

high 27
low 30

rigor xiii
rigor mortis xiii
rounding

to nearest integer 79
using one or few 78

scale invariance 40
seasonal temperature changes 86–88
seasonal temperature fluctuations

alternative explanation 88
secant approximation

see derivatives, secant approximation
secant line, slope of 38



133

second derivatives
see derivatives, second

Shannon–Nyquist sampling theorem
78

significant-change approximation
see derivatives, significant-change
approximation

similar triangles 61, 70
simplifying problems

see taking out the big part; lumping;
easy cases; analogy

sine, small-angle approximation
derived 47
used 86

small-angle approximation
cosine 95
sine 47, 66

solar-radiation intensity 86
space, dividing with planes 103–107
spectroscopy 35
sphere, volume from surface area 76
spring–mass system 42–45
spring constant

dimensions of 43
Hooke’s law, in 42

statistical mechanics 81
Stefan–Boltzmann constant 11, 87
Stefan–Boltzmann law

derivation 11
requires temperature in Kelvin 88
to compute surface temperature 87

stiffness
see spring constant

Stirling’s formula
see factorial: Stirling’s formula

successive approximation
see also taking out the big part
depth of well 92–94
low-entropy expressions 93
physical insights 93
robustness 93
versus quadratic formula 93

summation
approximately integration 113, 114
Euler–MacLaurin 112, 113
indefinite 110

integral approximation 74
operator 109–113
represented using differentiation 112
tangent roots 113–121
triangle correction 74, 113, 115

symbolic reasoning
brain evolution 57
seeming like magic 61

symmetry 72

taking out the big part 77–98
depth of well 92–94
polynomial extrapolation 106, 107
tangent-root sum 114, 117–118
trigonometric integral 94–97

Taylor series
factorial integrand 37
general 66
logarithm 66, 69

cubic term 68
pendulum period 53
tangent 118, 120

L (dimension of length) 5
tetrahedron, regular 99
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