
The	Abstract	Assignment	
An	abstract	describes	the	basic	content	of	the	project	to	the	reader.	It	includes				
1.	What	you	are	doing	
2.	Why	you	are	doing	it	
3.	How	you	are	doing	it	
4.	The	relevance	of	the	results	and	the	conclusion.		
	
An	abstract	is	a	self-contained	single	paragraph	that	describes	the	work.	It	
should	not	include	abbreviations,	acronyms,	or	bibliographic	information.	The	
point	is	to	enable	someone	unfamiliar	with	the	topic	to	quickly	understand	what	
is	being	done,	and	the	wider	relevance	of	the	work.	Your	abstract	should	be	
between	400-450	words	and	must	include	3	academic	and	2	non-academic	
sources.	
	
	
	
	
	
	
	
	
	
What	to	write	in	an	Abstract?	
	
Motivation:	A	little	history	about	who's	done	what	and	how	your	work	fits	
in	with	it.	
Why	do	we	care	about	the	problem	and	the	results?	If	the	problem	isn't	
obviously	"interesting"	it	might	be	better	to	put	motivation	first;	but	if	your	work	
is	incremental	progress	on	a	problem	that	is	widely	recognized	as	important,	
then	it	is	probably	better	to	put	the	problem	statement	first	to	indicate	which	
piece	of	the	larger	problem	you	are	breaking	off	to	work	on.	This	section	should	
include	the	importance	of	your	work,	the	difficulty	of	the	area,	and	the	impact	it	
might	have	if	successful.	
	
Problem	statement:	What	you're	trying	to	tell	the	audience	that	they	don't	
already	know	(e.g.	Your	story.)	
What	problem	are	you	trying	to	solve?	What	is	the	scope	of	your	work	(a	
generalized	approach,	or	for	a	specific	situation)?	Be	careful	not	to	use	too	much	
jargon.	In	some	cases	it	is	appropriate	to	put	the	problem	statement	before	the	
motivation,	but	usually	this	only	works	if	most	readers	already	understand	why	
the	problem	is	important.	
	
Approach:	Why	the	audience	should	believe	that	the	results	you've	got	
aren't	made	up	or	flawed	
How	did	you	go	about	solving	or	making	progress	on	the	problem?	Did	you	use	
simulation,	analytic	models,	prototype	construction,	or	analysis	of	field	data	for	
an	actual	product?	What	was	the	extent	of	your	work	(did	you	look	at	one	
application	program	or	a	hundred	programs	in	twenty	different	programming	
languages?)	What	important	variables	did	you	control,	ignore,	or	measure?	



	
Results:	Evidence	that	you've	come	up	with	that	confirms	your	story	
What's	the	answer?	Specifically,	most	good	computer	architecture	papers	
conclude	that	something	is	so	many	percent	faster,	cheaper,	smaller,	or	
otherwise	better	than	something	else.	Put	the	result	there,	in	numbers.	Avoid	
vague,	hand-waving	results	such	as	"very",	"small",	or	"significant."	If	you	must	
be	vague,	you	are	only	given	license	to	do	so	when	you	can	talk	about	orders-of-
magnitude	improvement.	There	is	a	tension	here	in	that	you	should	not	provide	
numbers	that	can	be	easily	misinterpreted,	but	on	the	other	hand	you	don't	have	
room	for	all	the	caveats.	
	
Conclusions:	Recap	of	your	story	and	its	implications		
What	are	the	implications	of	your	answer?	Is	it	going	to	change	the	world	
(unlikely),	be	a	significant	"win",	be	a	nice	hack,	or	simply	serve	as	a	road	sign	
indicating	that	this	path	is	a	waste	of	time	(all	of	the	previous	results	are	useful).	
Are	your	results	general,	potentially	generalizable,	or	specific	to	a	particular	
case?	
	
This	text	has	been	mildly	modified	from	Koopman	(1997)	"How	to	Write	an	
abstract"	
http://www.ece.cmu.edu/~koopman/essays/abstract.html	


